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Figure 7.14. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number 100,000, heated only from within, with
gravitational acceleration increasing linearly with radius and initialized
with a random temperature distribution. Final velocity and
temperature fields are displayed in (a)-(l). Orientations and radial
positions of views are identical to those of Figure 7.2. Maximum
velocity for views (a)-(f) is 50.4 and for views (g)-(l) is 84.3.
(m)-(q) correspond to similar plots in Figure 7.12.
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Figure' 7.15. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number 300,000, heated only from within, with
gravitational acceleration increasing linearly with radius and initialized
with a random temperature distribution. Final velocity and
temperature fields are displayed in (a)-(l). Orientations and radial
positions of views are identical with those of Figure 7.2. Maximum
velocity for views (a)-(f) is 92.5 and for views (g)-(I) is 131.5.
(m)-(q) correspond to similar plots in Figure 7.12. .
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7.4 SHELL HEATED BOTH FROM BELOW AND FROM WITHIN

The final experiment to be described in this chapter allows the
inner boundary to be conducting and examines the effect of varying
amounts of internal heat on the pattern of convective flow. In this
experiment the conditions used for the R = 25,000 heated frofn below‘
case of Section 7.2 are retained except tﬁat internal heating is adde}d.‘
The preferred solution corresponding to Figure 7.2 is used as the
initial condition. Three cases are described for which the fraction of
internally generated heat of the total heat flux leaving the shell is
appr‘okimately 25, 50, and 75 percent.

Figures 7.16 and 7.17 display the temperature and velocity fields
for the 50 and 75 percent Cases, respectively. In the case of 50%
internal heating, the cells show some distortion in shape compared with
the pattern of Figure 7.2, but otherwise the cell sizes and locations
are essentially the same. However, when the internal heating is
increased to 75%, notable changes occur. At the outer boundary,
although three regions of upwelling flow may stili be identified, the
patterr'm is dominated by two intense linear zones of downwelling flow,
more or less orthogonal to one another and on opposite sides of the
sphere. At the inner boundary, the pattern consists of two large
cells with downwelling at their centers and a continuous zone of
upwelling suggestive of the seams on a baseball or tennis ball. The
effect of the internal heating seems to make the regions of upwelling in
the outer portions of the shell more diffuse, while making the

downwelling more localized and intense. The heat from below, at this

Rayleigh number at least, appears to be keeping the pattern 6rganized

in a regular and orderly fashion in a small number of cells.
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Figure 7.18 shows the spherically averaged radial temperature

distributions for these three cases. There is a clear correspondence

between the fraction of internal heating and the interior temperature of
the shell. If the heating from below is neglected énd the Rayleigh
number formula (7.2) for an exclusively interhally- heated shell is
applied to these three cases, the resulting Rayleigh numbers are
30,600, 80,000, and 162,000, respectively. The fact that interior
temperatures of the 50 and 75 percent cases are much higher than
those obtained in the preceding section at comparable Rayleigh
numbers with strictly internal heating indicates that a modest amount
of heating from below exerts a strong influence on the convective
process.

Figure 7.19 shows the spherically averaged radial and tangential
velocity profiles versus radius. Although the normalized heat flows
for these cases are 5.86, 7.47, and 10.17, respectively, the velocity
profiles hardly differ. These cases suggest that partial internal
heating, compared with heating only from below, raises the internal
temperature, increases the outflow of heat, alters the pattern
somewhat, but Jleaves the mean convective velocities essentially

unchanged.
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Figure 7.16. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number: 25,000,

30% internal heating, with

gravitational acceleration increasing linearly with radius and initialized
with preferred pattern. Velocity and temperature fields are displayed’
in (a)-(1). Orientations and radial positions of views are identical to
those of Figure 7.2. Maximum velocity for views (a)-(f) is 89.5 and

for views (g)-(1) is 151.8.
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Figure 7.17. Convection solution for spherical shell, “radius
ratio 0.50, Rayleigh number 25,000, 75% internal heating, with
gravitational acceleration increasing linearly with radius and initialized
with solution of Figure 7.16. Velocity and temperature fields are
displayed in (a)-(lI). Orientations and radial positions of views are
identical to those of Figure 7.2. Views (a)-(f) are at a normalized
radial position of 0.981 and have a maximum velocity of 98.4. Views
(g)-(1) are at a normalized radius of 0.519 and have a maximum
velocity of 166.9.
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Figure 7.18. Spherically averaged radial temperature profiles
for convection in spherical shell, radius ratio 0.50, Rayleigh number
25,000, with gravitational acceleration increasing linearly with radius:

(a) 25% internal heating, (b) 50% internal heating, (c) 75% internal
heating.
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8. APPLICATION TO THE EARTH'S MANTLE

Upon specification of the svhell radius ratio, mode of heating,
radial variation of gravity, bulk modulus, thermal expansivity, and the
initial conditions, the non-dimensional Rayleigh number completes the
description of the convection problem, given the approximations lis;céd
at the beginning of the previous chapter. Applying methods used in
the last chapter to the problem of thermal convection in the earth's
mantle t'herefore involves relatively few changes. |

In the three experiments to be described in this chapter, a
different radius ratio, 0.547 instead of 0.50, and a constant
gravitational acceleration, in contrast to the linearly increasing gravity
with radius’ of the last chapter, are used.  The new radius ratio is
obtained by taking the mean radius of the earth (stripped of its
oceans), 6368 km, as the outer radius and the PEM value for the
core-mantle boundary, 3485 krﬁ, as the inner radius. The assumption
of uniform gravitational acceleration through the mantle is a good
approximation, as can be verified by referring to any of the standard
earth models. This approximate uniformity is a consequence of the
high density of the core relative to the mantle and to the density
variation within the mantle itself. The mode of heating for these
experiments is approximately 50 percent heatihg from below and
50 percent from within. The nominal values for bulk modulus and
thermal expansivity used in the last chapter are also used here. The

difference among the experiments is the initial conditions.
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8.1 MANTLE CONVECTION WITH L = 3 INITIAL TEMPERATURES

This experiment uses the preferred solution of Section 7.1 as its
ihitial condition. Model parameters match quiter closely those actually‘
used in Chapter 7 and are listed in Table 8.1. Cases were run at
Rayleigh numbers, defined by equation (7.1>), of 25,000 and 100,000.

Figures 8.1 and 8.2 ‘show the solutions obtained. The solution of
Figure 8.1 closely matches that of Figure 7.16, which has the same
nominal Rayleigh number and fraction of - internal heating.  The
différence is that the Figure 8.1 case has a slightly higher radius
ratio and constant gravitational acceleration which gives it an effective
Rayleigh number about 30% higher. In the patterns of Figures 8.1 and
8.2 the downwelling region which separated the two large cells at 180°
longitude in heated from below cases has disappeared near 30°
latitude, and the two large cells have essentially combined to form a
single giant dumbbell-shaped cell. There is ljttle change in the
pattern the Rayleigh number is increased from 25,000 to 100,000. The
radial temperature profiles are almost identical except for a reduced
boundary layer thickness at R = 100,000.

For these two cases, the heat flow increases from 22.0 mW/m?2 to
30.2 mW/m? as the Rayleigh number is increased by the factor of four.
If the Nusselt number varies according to R2%% as found for heating
strictly from below in Chapter 7, the heat flow for the R = 100,000
case should have been 32.7 mW/m2. The 8 percent discrepa.ncy is
mostly a consequence of underresolution of the n = 8 grid at this
Rayleigh number. However, given that the n = 16 grid is on the

order of 25 times more costly and that little difference was observed in
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the resulting pattern at higher resolution for the R =

100,000 case in

Chapter 7, it is deemed useful to perform preliminary exploration at

these high Rayleigh numbers using the coarser grid.
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Table 8.1. Mode! parameters for mantie convection
experiments for Rayleigh number of 25,000.

OQuter radius of mantle 6.368 x 108 m
Inner radius of mantle 3.485 x 108 nm

Mean dénsrfy ‘ 4.500 x 103 Kkg/m3
Dynamic shear viscosity ; | 4.519 x 1022 kg/m/s
Bulk modulus 2.500 x 10109 pa

Volume coefficient of thermal expansion 2.500 x 10°7 k1

Thermal conductivity 4.000 W/m/K
Specific heat - 1.000 x 103 J/kg/K
Gravitational acceleration 10.0 m/s
Volumetric radiogenic heat production 6.000 x 10°9 W/m3
Outer boundary temperature 275.0 K
Inner boundary temperature 4000.0 K

Note: R = 100,000 case used a viscosity of 1.130 x 1022
kg/m/s and a heat production of 8.400 x 10°% W/m .
R = 1,000,000 case used a viscosity of 1.130 x 1021
kg/m/s and a heat production of 1.600 x 1078 w/m .
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Figure 8.1. Convection solution for spherical shell, representing
the earth's mantle, radius ratio 0.547, Rayleigh number 25,000, 48%
internal  heating, constant amplitude © gravitational acceleration,
initialized with pattern of Figure 7.2. Velocity and temperature fields
are displayed in (a)-(l). Orientations of views are identical to those
of Figure 7.2. Radial position for views (a)-(f) is 6170 km, and
maximum velocity is 1.01 mm/yr. Radial position for views (g)-(1) is
3635 km, and maximum velocity is 1.81 mm/yr. Temperature contours
in (a)-(l) are normalized to the inner boundary temperature of
4000 K. Temperature of outer boundary is 275 K. (m) shows the
spherically averaged radial and tangential velocity profiles and (n)
the spherically averaged radial temperature profile. " The internally
generated heat and the fixed temperature imposed at the inner
boundary account for the character of the conductive profile in (n).
(0)-(r) are time history plots, respectively, of RMS nodal velocity
normalized by k/d, where x = 8.89 x 10~* m2/s and d = 2883 km; mean
shell temperature normalized such that the outer boundary has
temperature zero and the inner boundary one; heat flow through the
outer boundary normalized by the purely conductive state heat flow in
the absence of internal heating; and the heat flow through the inner
boundary similarly normalized. Time in these plots is normalized by
d/k.
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Figure 8.2. Convection solution for spherical shell, representing
the earth's mantle, radius ratio 0.547, Rayleigh number 100,000, 48%
internal  heating, constant amplitude gravitational acceleration,
initialized with solution of Figure 8.1. Velocity and temperature
fields are displayed in (a)-(l). Orientations of views are identical to
those of Figure 7.2. Radial position for views (a)-(f) is 6258 km,
and maximum velocity is 2.77 mm/yr. Radial position for views
(g)-(1) is 3595 km, and maximum velocity is 5.03 mm/yr, Temperature
contours in (a)-(l) are normalized to the inner boundary temperature
of 4000 K. Temperature of outer boundary is 275 K. (m)-(r) have
same significance and normalization as in Figure 8.1.
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8.2 MANTLE CONVECTION WITH RANDOM INITIAL CONDITIONS
This experiment is identical to that of the previous section except

that, instead of the preferred pattern of Section 7.1 as the initial

condition, a random initial temperature distribution was used. ‘“The

solutions after approximately 3.5 convective overturn times are shoWn
in Figure 8.3 for the R = 25,000 case and Figure 8.4 for the
R = 100,000 case. The fact that the RMS velocity is still increasing
slightly at the end of the runs indicates that the solutions have ﬁot
yet reached their steady configuvrations. Both solutions display three
well-defined cells and qualitatively resemble the solutions of the
preceding section. The heat flows of 22.2 mW/m? and 30.3 mwW/m?,
respectively, agree closely with the values of the last section. At the
outer boundary, the solutions are characterized by broad areas of
divergent upwelling flow and more localized and intense linear regions

of downwelling flow.
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Figure 8.3. Convection solution for spherical shell, representing
the earth's mantle, radius ratio 0.547, Rayleigh number 25,000, 48%
internal heating, constant amplitude gravitational acceleration,
initialized with random initial temperatures. Velocity and temperature
fields are displayed in (a)-(l1). Orientations and radial positions of
views and normalization of temperature contours are identical to views
(a)-(1) of Figure 8.1. Maximum velocity for views (a)-(f) s
1.03 mm/yr and for views (g)-(1) is 1.81 mm/yr. (m)-(r) have same
significance and normalization as in Figure 8.1.
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Figure 8.4.. Convection solution for spherical shell, representing
the earth's mantle, radius ratio 0.547, Rayleigh number 100,000, 48%
internal heating, constant amplitude gravitational = acceleration,
initialized with random initial temperatures. Velocity and temperature
fields are displayed in (a)-(l). Orientations and radial positions of
views and normalization of temperature contours are identical to views
(a)-(1) of Figure 8.2. Maximum velocity for views (a)-(f) is
3.00 mm/yr and for views (g)-(I) is 5.11 mm/yr. (m)-(r) have same
significance and normalization as in Figure 8.1. ‘
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8.3 MANTLE CONVECTION WITH RIDGE/TRENCH DISTRIBUTION
SPECIFYING INITIAL TEMPERATURES

This experiment is similar to that of the previous two sectlons‘
except that a temperature distribution warmer beneath present
mid-ocean ridges and cooler adjacent to subducting trenches is used as
the initial condition. Cases were run with n = 8 grids at R = 25,000
and R = 100,000 and with n = 16 grids at R = 1,000, 000. |

Figure 8.5 shows the temperature field for the R = 25,000 case
early in its time history and reveals the character of the initial
temperature distribution. Figures 8.6-8.9 show the solution at
approximately 0.08, 0.75, 2.0, and 3.3 overturn times. A number of
general observations can be made. One is the good correlation
between the velocity fleld at the outer boundary and present plate
motions, although the agreement is better near the beginning than at
the end of the run. The pattern is surprisingly stable, with its basic
character persisting throughout the three convective overturns.
Changes that do occur include migration of the Indian Ocean upwelling
region northward, a similar northward extension of the East Pacific
upwelling region, and a southward extension of the downwelling region
beneath Africa across the South Atlantic. At the final time, the mean
surface velocity is 0.60 mm/yr and the mean surface heat flow 22.3
mW/m?2,

Although there is no detailed correspondence between this pattern
and the R = 25,000 solutions of the preceding two sections, the spatial

frequencies, mean temperatures, global heat flows, and spherically
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averaged radial temperature profiles are quite similar. This suggests
that the relative stability observed'during the brief time the solution
was followed would persist and that co‘nvergence to an ideal preferred
pattern would require several more convective overturns.

Figur'es 8.10-8.14 shéw a similar sequence of snapshofs_for fhé
solution at R = 100,000. These snapshots are taken at approximately
0.1, 0.9, 2.3, 3.0, and 4.0 convective overturn times. The changes
which occur during this interval correspond closely with those of the
R = 25,000 case. At the end of the run there is essentially a single
connected region of upwelling, extending from what is presentl'y
western Asia, south through the Indian Ocean, across the southern
and eastern Pacific, northeastward through western and northern
North America, and finally southward through the Atlantic.
Downwelling is thereby divided into two identifiable regions, one
centered in the far western Pacific and the other forming a horseshoe
pattern beneath eastern Europe and Africa, across the south Atlantic,
northward beneath South America, and into the Caribbean. This case
had a RMS surface velocity of 1.58 mm/yr ana a mean surface heat
flow of 30.4 mW/m?2.

Values of 2.5 x 10°% K-! for a, 10 m/s? for g, 4.5 x 10® kg/m?
for o, 10% J/kg/K for cp, 2 x 10 K for the superadiabatic AT,

2.88 x 10° m for the mantle thickness d, 4 W/m/K for k, and
3 x 10%* kg/m/s for u yield an estimate for the Rayleigh number of the
earth's mantle of 2.0 x 107. Although the two cases j'ust summarized
suggest the single-layer pattern with upwelling flow correlated with

current locations of sea-floor spreading is relatively stable, these
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results‘ should be 'interpreted with caution since the Rayleigh numbers
are more than two orders of magnitude below that of the mantle.

The final two cases to be described have a Rayleigh number of
10°, a factor of 20 from the estimate for the earth. Both cases used
n =.16 grids with 43554 nodes and 81920 cells. The"s’e" caseswere f
initialized with the R = 100,000 solution at 0.1 overturn time“showrn m
Figure 8.10. o

Figures 8.15 and 8.16 show the solution for a case whichA hasbth>in;
layers of cells (28 km in thickness) at‘ both inner and outer shell
boundaries. Figure 8.15 displays the velocity and temperature
distributions at approximately 0.9 overturn time. In plots (a)-(f) it is
possible to identify seven upwelling plumes, three of which lie mostly
in the northern hemisphere and four in the southern hemisphere. The
solution after 1.8 overturn times in Figure 8.16 shows the plumes
better established and the regions of downwelling organized into more
clearly defined linear zones between plumes. The heat flow at this
time is 65 mW/m?, and the RMS surface velocity is 5.8 mm/yr.

Two features in this solution divstinguish .it from what is actually
observed for the earth. One is its high ratio of heat flow to surface
velocity at the outer boundary. For the earth the heat flow is about
70 mW/m? while the RMS surface velocity is approximately 30 mm/yr.
The second feature is the large amount of local variation in magnitude
and direction in the velocity field. In contrast, the earth's tectonic
plates tend to move as rigid units so that surface velocities show little
local variation except at plate margins. Both departures from
earth-like character in the numerical model are related to a lack of

stiffness in the region near the outer boundary.
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A simple rﬁeans for obtaining a slightly improved representation
for the earth's lithosphere without modifying any of the assumptions in
the numerical method is to increase the thickness of the cells at the
outer boundary. A second case, identical to the previous one except
for its radial discretization, was run for approxir_nately; the same leﬁgt’l‘ﬁ'
of time. For this casé the éutermost layer of cells had a thickness pf
150 instead of 28 km. The resulting solution is shown in Figures
8.17-8.21 at approximately 0.1, 0.7, 1.0, 1.4, and 1.7 _convective‘
overturn times, respectively. In Figure 8.17 much of the character of
the initial condition is still discernable. vAfter 0.7 overturn time
(Figure 8.18), the plume-like style for the upwelling flow is appearing
at the outer boundary. By 1.0 overturn time (Figure 8.19), seven
upwelling plumes are clearly evident. Downwelling flow at the outer
boundary is organized into linear zones between plumes. Snapshots at
1.4 and 1.7 overturn times (-Figures 8.20 and 8.21) display relatively
small changes in the pattern, changes which for the most part enhance
thé pattern’s organization. Figure 8.21 (g)-(1) at a radius of 4850 km
(appr;ximately midway down in the shell) shows the small
cross-sectional area of the upwelling flow. The downwelling flow still
retains its sheetlike character. At the time of the last snapshot the
mean heat flow is 63 mW/m?2 and RMS velocity is 6.0 mm/yr at the
outer boundary. The increased thickness of the outer layer of cells
appears to have modified the solution only mildly. The mean heat flow
is only 4% lower than the previous case.

Power-law relationships for heat flow and surface velocity in

terms of the Rayleigh number can be estimated from these results. As
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the R = 100,000 case is underresolved with an n =8 grid, the
R

1

25,000 and R = 10° cases are used. For consistency, the first

R

10° case is selected. Heat flow values of 22.3 and 65.4 mW/m?,
respectivély, for the two cases imply that heat flow is proportional fo
R®* 282 RMS surface velocities of 0.601 and 5.82 mm/yr yield an
exponent of 0.615 for the velocity power law. e

If these power-law relationships. are used to extrapolate ‘t‘o a
Rayleigh number of 2 x 107, one obtains a heat flow of 157 mW/m? ahd
a surface velocity of 36.7 mm/yr. Although t.he surface velocity is
similar to what is observed for the earth, the heat flow is roughly
twice as high. Correct treatment of the stiff lithosphere in the model
would lower the heat flow considerably, however. Furthermére, this
scaling is based on cases which had approximately 50% internal
heating. One could argue from results of Section 7.4 for partial
internal heating that if the internal heating were smaller, the mean
velocities would remain essentially unchanged and the heat flow could
be smaller by up to a factor of two. Given the simplicity of the
model, however, compared with ‘the complexities of compressibility,
temperature-dependent rheology, and phase changes associated with
the mantle, the agreement is deemed remarkable. These results,
particularly the velocity scaling, seem to favor whole-mantle, in
contrast to two-layer, convection because of the significantly lower

efficiency of two-layer flow.
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Figure 8.5. Temperature distribution of convection solution
after approximately 0.08 convective overturn time for spherical shell
representing the earth's mantle, radius ratio 0.547, Rayleigh number
25,000, 48% internal heating, constant amplitude gravitational
acceleration, initialized with warmer temperatures beneath present
mid-ocean ridges and cooler temperatures adjacent to ocean trenches.
Orientations and radial positions are identical to views (a)-(f) in
Figure 8.1.
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Figure 8.5
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Figure 8.6. Convection solution  after approximately 0.08
convective overturn time for spherical shell representing the earth's
mantle, radius ratio 0.547, Rayleigh number 25,000, 48% internal
heating, constant amplitude gravitational acceleration, initialized with
warmer temperatures beneath present mid-ocean ridges and cooler
temperatures adjacent to ocean trenches. Velocity and temperature
fields are shown together in (a)-(1). Orientations and radial
positions of views and normalization of temperature contours are
identical to views (a)-(!) of Figure 8.1. Maximum velocity for views
(3a)-(f) is 0.71 mm/yr and for views (g)-(1) is 1.23 mm/yr. Views
(m)-(r) have the same orientation as (a)-(f) with radial position of
6368 km and maximum velocity of 0.71 mm/yr.
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Figure 8.6

198




Figure 8.6
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Figure 8.6
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Figure 8.7. Same solution as Figure 8.6 exce
0.75 overturn time. Maximum velocity for
1.01 mm/yr and for views (g9)-(1) is 1.89 mm/yr.

pt at approximately
views (a)-(f) is
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Figure 8.7
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2.0 convective overturn times.
1.24 mm/yr, for views (g)-(1) is 2.11 mm/yr,

Figure 8.8. Same solution as Figure 8.6 except at approximately

Maximum velocity for views (a2)-(f) is
and for views (m)-(r)
1.26 mm/yr.
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