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ABSTRACT OF THE DISSERTATION

A Three-Dimensional Finite Element Model

for Mantle Convection

by

John Rudolph Baumgardner
Doctor of Philosophy in Geophysics and Space Physics
University of California, Los Angeles, 1983

Professor G. P. Bird, Chair

This dissertation presents a highly efficient numerical approach for
solving the conservation equations for momentum, mass, and energy
in a spherical shell. The treatment is limited to an infinite Prandtl
number Newtonian fluid, although the method is not. An almost uni-
form discretization is described based on successive dyadic refine-
ments of the mesh obtained by projection of the regular icoshedron
onto the sphere. The finite element formulation utilizes a new spheri-
cal element defined in terms of spherical barycentric coordinates. A
fast multigrid elliptic solver, which takes advantage of the nested

character of successive refinements of the icosahedral grid, is used to

ix



solve the equation of motion for the velocity field in order(n) opera-
tions, where n is the number of nodes in the three-dimensional grid.
The order(n) speed of the algorithm means that high-resolution 3-D
problems are practical on current vector computers such as the
Cray-1. Time-dependent convection experiments that use a grid with
43,554 nodes are presented.

Application of the numerical method is limited in the dissertation to
the case of infinite Prandtl number, almost incompressible convection
in non-rotating spherical shells with undeformable, free-slip boundar-
ies, spatially uniform material properties, and a linear, isotropic
rheology. Several new results are obtained for a shell radius ratio
0.5 and linearly increasing gravity with radius. When heating is en-
tirely from below, the Nusselt number varies as the Rayleigh number
R to the 0.286 power for R greater than 25,000. A preferred pattern
with 3 cells which is stable at least to R = 100,000 is identified for
this mode of heating.

Applied to the earth's mantle using constant gravity and a radius
ratio of 0.547, the method vyields solutions at R = 1,000,000 with
plume-like character. Cases initialized with temperatures warmer be-
neath present ridges and cooler adjacent to present trenches give
patterns with upwelling localized to seven plumes that correlate with
current mid-ocean ridge and volcanic features. Scaling of these
whole-mantle flow results to R = 20,000,000 gives a RMS surface vel-

ocity of 37 mm/yr.



1. INTRODUCTION

Key to understanding the dynamics of the earth's tectonic history
is the ability to model thermal convection in the mantle. Because the
problem is nonlinear, three-dimensional, and time-dependent, with
rheology a strong function of temperature, its detailed solution has
been considered well beyond the reach of existing computers
(Schubert, 1979; Torrence, 1979; Boss, 1983) This dissertation
represents a step in overcoming the computational barrier by
describing a numerical approach with the efficiency to treat
three-dimensional, high Rayleigh number convection on currently
existing machines. Although the approach has the generality to handle
compressible convection with spatially varying (e.g.,
temperature-dependent) rheology, the dissertation restricts its scope
to the case of almost incompressible, constant viscosity flow.

Thermal convection in spherical shells has been studied several

investigators. Chandrasekhar (1961) applied linear theory to find the



critical Rayleigh numbers for a variety of spherical cases. Young
(1974) used a spherical harmonic representation for tangential field
components and a finite-difference representation for the radial to
investigate  three-dimensional finite-amplitude convection of a
Boussinesq fluid in spherical shells of radius ratios 0.3 and 0.6 and
Prandtl numbers 1 and 5 for Rayleigh numbers up to about 5 times
critical. He found that axisymmetric solutions in general are not the
preferred solutions and that the dominant harmonic modes at finite
amplitude are usually the modes most unstable to the onset of

convection.

Busse (1975) showed that the preferred patterns of convection
near the onset of convection can be found from the solvability
conditions generated when nonlinear terms are added as perturbations
to the linear problem. He found that solutions exhibiting the
symmetries of four of the five Platonic bodies are preferred among the
various L = 4 and L = 6 spherical harmonic patterns. This analysis,
extended to spherical harmonics of odd degree (Busse and Riahi,
1982), indicated that a pattern with tetrahedral symmetry is preferred
at the onset of convection when L = 3. Expansion of the dependent
variables in the convection equations in powers of the convective
amplitude was applied by Riahi et al. (1982) to treat three-dimensional
small amplitude convection in spherical shells with radius ratios of 0.33
and 0.5. This study found the L = 3 tetrahedral solution to be

preferred for the radius ratio 0.5 near the onset of convection.



Zebib et al. (1980) used a Galerkin technique with Legendre
polynomial basis functions to investigate axisymmetric, infinite Prandtl
number, Boussinesq convection in a spherical shell of radius ratio 0.5
heated only from below for Rayleigh numbers up to about 10 times
critical. This study found axisymmetric L =3 and L = 4 solutions,
but linear stability analysis indicated the L = 4 solutions are not
stable. The same numerical procedure and assumptions applied to the
case of strictly internal heating (Schubert and Zebib, 1980) showed
that the only possible steady solutions are fully three-dimensional.
These axisymmetric calculations were extended to include other radius
ratios by Zebib et al. (1983) for Rayleigh numbers up to about five

times critical and reveal many interesting features.

The numerical approach presented in this dissertation exploits the
flexibility of the finite element method. Its novelty is the use of an
almost uniform triangular discretization of the sphere together with a
multigrid technique for solving the equation of motion. The multigrid
algorithm solves the system of n equations in O(n) machine operations
and thus affords a savings in computational cost similar to that
realized by the fast Fourier transform in spectral computations. A
new type of finite element for the sphere based on spherical
barycentric coordinates is described. An important benefit of the
discretization is a data structure that can be readily vectorized on a
computer such as the Cray-1 and partitioned for efficient

implementation on computers with multiple processors.



The dissertation describes the numerical method in considerable
detail. It provides estimates of its accuracy and illustrates its
capabilities with examples of convection in spherical shells with
undeformable, free-slip, isothermal boundaries. Finally, results for

some simplified models of the earth's mantle are presented.



2. BASIC EQUATIONS

In treating mantle convection in the terrestrial planets, it is
appropriate to neglect both inertial and Coriolis forces, that is, to
assume both the Prandtl number and Ekman number are infinite. The
Prandtl number measures the relative magnitude of viscous forces to
inertial forces, while the Ekman number describes the relative
magnitude of viscous forces to Coriolis forces. Viscous forces are
relatively large because of the large values of viscosity associated with
the solid state. For the earth's mantle, the Prandtl number is on the
order of 10%?, and the Ekman number is on the order of 10° or
greater. Therefore, inertial and Coriolis forces are omitted in the
formulation which follows. The centrifugal body force is also
neglected, and the planetary mantle is treated as a spherical, instead
of a slightly spheroidal, shell.

With these assumptions the following equations, written in
Cartesian tensor notation, describe the balance of forces and the
conservation of mass and energy for an infinitesimal volume of fluid in

a Eulerian reference frame:

o + 3'(pu‘) = 0 (2.2)
3 31_(pe) + a'(peul) = --alql +H+ UUe'J A (2.3)



Here oij represents the stress tensor, p the density, gj the

gravitational acceleration, u. the velocity, e the internal energy, q;

the heat flux per unit area, H the volumetric radiogenic heat

production rate, and eij = %(aiuj + ajui) the rate of strain tensor.

1
M
o
o

The summation convention, a.b, , 1is used here and

i cut )
throughout the dissertation.

It is convenient to resolve the stress tensor °ij into hydrostatic

and viscous components

9, -psU + Ty (2.4)

J
where p is pressure, Gij is the Kronecker delta, and tij is the viscous

stress tensor.

To relate stress to the velocity field of the fluid a constitutive
relation is needed. At very low rates of strain, diffusion creep is the
dominant mechanism for solid-state flow. This type of creep has a
linear, or Newtonian, constitutive law which may be expressed in terms

of a dynamic shear viscosity yu and bulk viscosity B as

1’” 2u(£lj -_G'Jekk/3) - lejekk ' (7.5
where
KTRZ
- c E* + pV* (2.6)
¥ = Too v, e [ KT



(Herring, 1950). Here k is Boltzmann's constant, T absolute

temperature, Rc the crystal radijus, Do a reference diffusion
. . . * . .
coefficient, Va the mean atomic volume, E an activation energy, and

V* an activation volume. The bulk viscosity B arises from volume
changes which are rapid relative to molecular relaxation processes.
For time scales related to mantle flow, the bulk viscosity term
therefore may be neglected.

At higher rates of strain, dislocation creep likely plays a
significant role. In this case the constitutive law is nonlinear with the
stress varying approximately with the one-third power of the strain
rate (Weertman and Weertman, 1975). Although strain rates in the
mantle almost certainly are high enough for dislocation creep to be
occurring, numerical experiments (Christensen) indicate  that
convection with a nonlinear rheology can be approximated quite well
using a linear constitutive law with modified values for the activation
energy and volume. This dissertation will restrict treatment to a

linear and isotropic constitutive law given by

2u(eU = G'Jekk/.’:) > (2.7)

le

From (2.4) and (2.7), -the divergence of the stress tensor in

(2.1) may be expressed in terms of velocity as

= = . .8)
at"u aJp + a'ua,uJ + 31“3J”| Zajua,ui/.’» (2



Similarly, the shear heating term cijsij in the energy conservation

equation (2.3) may be written in terms of velocity as

2
~ - ) A 9
cUeU. palu] + u(alu +3.u )(3IUJ) 21.|(B‘uI /3 (2.9)

S it

Equation (2.3) can be further expressed in terms of temperature
by use of thermodynamic identities. We note that de = Tds - pdv and

ds = (cp/T)dT - (e/p)dp, where s represents specific entropy,
v specific volume, cp specific heat at constant pressure, and « the

volume coefficient of thermal expansion. We also note that (2.2)

implies that ai“i - (atv + uiaiv)p. Finally, with Fourier's law of heat
conduction, q; = -kaiT, where k is thermal conductivity, (2.3) may be

written

aT aTl
cpa*(pT) %5 a#(pp) + cpal(pTui) == ai(ppu')
|

2 2
= 3,ka, T +H+ u[(a]uJ + aJul)(aiuJ.) - $3,u) e (2.10)

The force balance and conservation of mass and energy under the
approximations made to this point, namely, infinite Prandtl number, no
rotational forces, and a linear isotropic constitutive law with zero bulk

viscosity, may be expressed
9,ud,u +3uau-2-auau-ap+g = 0 (2.11)
i oy GRS Rend) el B Bl oot RS L GRS .

31,9 — -al(put) (2.12)



(pTu.) + ~—{3.k3.T + 91{8*(pp) + 2, (opu)]
p

i c ||

2,.(pT) = =3
& p

i

+H + u[(aiu~j + 3j”1”31“j) - %(aiu )2]} . (2.13)

1

To solve this system of equations an equation of state is needed
to relate pressure to density and temperature. The following, based
on a Morse potential is an example of the several which have been

applied in mantle calculations (Stacey et al., 1981):

3K 2/3
Ui - N {3 ) ) -1/3
P T (°o) texp [2(K! - )01 ~(o/p )™/

- exp [(K! - 4 -(b/po)'1/3n} taKT (2.14)

where Ko is the bulk modulus, K'o is the pressure derivative of Ko

’

‘and Po is the density, all at zero temperature and zero pressure. KT

is the bulk modulus at high temperature (above the Debye
temperature) and zero pressure. The thermal contribution to the

pressure is given by the term aK.rT. When T greatly exceeds the

Debye temperature, as is the case for the interiors of the terrestrial

planets, the product aKT is largely independent of temperature and

volume, and this simple form for the thermal pressure appears to
provide an accurate representation (Anderson and Baumgardner,
1980).

The system of equations (2.11)-(2.14) thus contains the essential

physics for treating mantle convection in terms of a linear viscous



rheology. In particular, they account for compressibility and admit
spatial variation in all the material parameters.

The finite-element formulation to be described in the following
chapters possesses the flexibility and efficiency to include this degree
of generality. However, in what is to follow, the treatment will be
restricted to a model for which the fluid is almost incompressible and
the viscosity and other material parameters have a constant value
throughout the domain. This permits use of a scalar instead of a
tensor operator in the force balance equation and results in a
considerable savings in computational cost. It also allows a more
direct comparison with finite-amplitude results of other investigators
who have used the Boussinesq approximation.

These additional assumptions, of course, simplify the system of
four equations significantly. In the case of the force balance equation
(2.11), the viscosity may be taken outside the derivatives and the
terms containing the divergence of the velocity neglected. In the
energy equation, the adiabatic compression terms may be dropped and
the thermal conductivity moved outside the derivative. Shear heating
will also be neglected since it can be shown (Turcotte et al., 1974) to
be balanced by adiabatic compression terms. A simpler equation of
state is now appropriate since only small changes in density are to be

allowed. This simplified system may be written
9,2 -3.,p + = 0 (2.15)

3_rp = -al(pul) (2.16)

10



Bf(pT) = -aT(OTUI) + (ko,3.T + H)/cp (2.17)

i

p = Kop/po-l-aKoT . (2.18)

An evident strategy for solving this time-dependent system is to
use (2.18) to provide the pressure field for (2.15), to solve (2.15) for
the velocity field, to use this velocity field to find the time rates of
change in density and temperature from (2.16) and (2.17), and then
to take a time step and repeat the process. This is the approach
followed in the discrete formulation. The most expensive step in this
procedure is the solution of (2.15) for the velocity field. An efficient

means for doing this will be described in Chapter 5.

11



3. THE GALERKIN METHOD

Suppose we are seeking a set {uk} of m unknown functions, each
of which depends on m independent variables (xk}, that satisfies a

specified set of m linear differential equations

Djkuk+dJ w0 e e m (3.1)
within a domain 2 and also satisfies m linear specified boundary
conditions

% = (3.2)
Bk + ) S el [~

on the boundaries T of the domain.
Since the set of differential equations (3.1) vanishes everywhere

in 2, it follows that for any arbitrary integrable function w on R

.éw(Djkuk +dpd = 0, =1, ..,m. (3.3)

The converse is also true, namely, that if (3.3) is satisfied for any
integrable function w on @, then (3.1) must be satisfied at all points

in 2. This is verified by observing that if Djkuk +d#0 at some

point in Q then a w can immediately be found which makes the integral
expression (3.3) nonzero.
Similar statements can be made concerning the boundary

conditions (3.2), namely, that

W = = . (3.4)
‘["(B_[kuk*' bJ)dI’ 0, J 4piveap. (M

12



for any integrable function W on T is true if and only if (3.2) is
satisfied.
For convenience let us combine (3.3) and (3.4) into a single

expression

_éwcojkuk +d,)d0 +{w(DJkuk +bdr = 0,
Jg{, essy M ’ (3.5)
where w and W represent any integrable functions on Q and T,
respectively, and note that (3.5) is equivalent to (3.1) and (3.2).

Now let us apply an approximation procedure to this general

problem and settle for an approximate solution, that is, a set (Gk),
expressed as a linear combination of a finite set (Ng} of n basis
functions which also are functions of the independent variables (xk}.

That is,

u, = N K =15 covilm o (3.6)

k Ty’

The problem then becomes one of finding the unknown coefficients 3,
If we now substitute for up in (3.5) the representation for Gk of
(3.6), we obtain

,4W(DJkakzNz +d,)do +_4' WBj 2N, +bdr =0,

J=1, cop m, (3.7)

13



But since w and w are arbitrary functions, we can choose sets {wi}
and {Vvi} of n linearly independent functions on Q and T, respectively,

to provide mn independent equations of the form (3.7):

[_£ WDy Nydn + LWIBJszdY]akz +_4 wd d
+'(Wlbjdn =0, j=1,
i =1, ..., n. (3.8)

Therefore, the problem of finding the mn unknown coefficients A,

reduces to that of solving a system of mn simultaneous linear equations

A a +c = 0 I =1 n
I Jk2 k& I LR
J . J = 10 seey M, (3.9)
where
Ao = 4W'DJszdn +‘[wIBJkN2dI‘ (3.10)
and

e = éwldjdn +£ wbdr . (3.11)

The error, or residual, resulting from use of Gk instead of U in

. . A . . ~ +
(3.1) is simply Djkuk * dj‘ The error in (3.2) is Bjkuk bj'
Expression (3.8) thus implies that the approximate solution Gk obtained

through this procedure yields zero integrated error when weighted by

each of the functions w; and Wi on Q and T, respectively. This

approximation procedure is known therefore as the method of weighted

14



residuals. It has been applied in various forms since the end of the
last century. A wide class of weighting or test functions may be
used, but the most frequent choice today is that proposed by Galerkin

in 1915. Galerkin selected for the weighting functions (wi) and (Wi}
the basis functions (Nz} used to represent the approximate solution

(Gk}. For this case, (3.9) may be expressed

U S 0, TR, ceesi

ke ke T o Coy=t, o, (3.12)
where

Aiiks = ‘4‘NIDJszd9 +.[ N, B Nydr (3.13)
and

&, m Nddn+bedl‘ ) :

. _{; 9 [ Miby (3.14)

N to the linear problem

The approximate solution up = 3N,

described by (3.1) and (3.2) merely involves solving the linear system

of algebraic equations (3.12) for the coefficients A,

Although the class of admissible basis functions for this method is
large, restrictions are imposed by the order of the differentiation in

the operators Djk and Bjk’ For the integrals of (3.10) to be well
behaved, the basis functions {NQ} must have their first p - 1
derivatives continuous, where p is the highest order derivative in Djk
or Bjk' Often, however, it is possible to perform an integration by

parts to obtain a form with lower order derivatives. This then

15



reduces the basis function continuity requirements.

The basis functions may be global in extent as, for example, the
various harmonic functions widely used in Galerkin-Fourier spectral
methods. Or they may be limited to local subdomains of 2. The latter
case is commonly referred to as the finite-element method. It has
great generality and is currently being applied to a broad spectrum of
continuum problems in engineering and the physical sciences
(Zienkiewicz, 1977). Much of its appeal arises from the flexibility that
local basis functions provide in handling complex boundaries and
spatially varying material properties.

An example in the field of geophysics is a recent finite-element
model for the tectonic deformation of southern California that
represents the regional network of faults with special curved elements
and includes the effects of non-linear rheology, local variations in
elevation and heat flow, as well as various patterns of horizontal
mantle-drag on the base of the crust (Bird and Baumgardner, 1983).

The finite-element method is the approach developed in chapters

to follow for the problem of mantie convection.

16



4. THE FINITE-ELEMENT DISCRETIZATION
One of the first tasks in applying the procedure described in the
previous section is the selection of the finite-dimensional approximation
space within which the solution is to be represented. To describe this
space it is customary to specify a grid on the domain Q of the problem
and then to associate a local basis function with each node and/or cell

in the grid. We begin with a discussion of the grid.

4.1 DYADIC SPHERICAL ICOSAHEDRAL GRID

The mantle is treated as a thick spherical shell. For reasons
which will become evident, a grid based on the regular icosahedron is
selected to discretize this spherical problem. Such a grid was applied
by Vestine et al. (1963) in an analysis of the geomagnetic field.
Sadourny, Arakawa, and Mintz (1968) and Williamson (1968) used grids
contructed from the regular icosahedron in finite-difference integration
on the sphere of the nondivergent barotropic vorticity equation.
Cullen (1974) employed a similar grid with a finite-element approach to
integrate the shallow water equations on the sphere. These
investigators all point out the benefits of this discretization, which has
elements nearly equal in area and shape.

There are several ways to construct a grid based on the
icosahedron. The method to be described here is somewhat different
from those just mentioned and leads to several additional advantages.
The initial step is to project onto the unit sphere the twelve vertices
of the regular icosahedron. These twelve points define a mesh

consisting of twenty equal spherical triangles (Figure 4.1a).

17



Figure 4.1. Dyadic refinements of grid produced by projection
of the regular icoahedron onto the sphere: (a) original grid, (b) first
refinement, (c) second refinement, (d) third refinement, (e) fourth
refinement, (f) fifth refinement.

18



A dyadic mesh refinement procedure is then used to generate a
mesh of the desired resolution. The refinement technique simply
connects the midpoints of the three sides of each spherical triangle
with geodesic, or great circle, arcs to divide it into four subtriangles.
This produces a refined mesh with four times the number of spherical
triangles and approximately four times the number of nodes.
Figure 4.1b-f shows five such successive dyadic refinements of the
original spherical icosahedron. We note that there are 2 * 10n? nodes

and 20n? elementary triangles in the kth refinement, where n = 2k.

Each node is surrounded by six triangles except for the twelve
icosahedral vertices of the initial mesh. These are surrounded by five

triangles and thus will be referred to as pentagonal nodes.

19



4.2 INDEXING CONVENTIONS

This icosahedral grid for the sphere leads to a convenient data
structure for numerical calculations. Suppose, as illustrated in
Figure 4.2, that two antipodal pentagonal vertices are designated north
and south poles, respectively. Then ten separate pairs of spherical
icosahedral triangles may be identified, each of which forms a rhombus
or diamond, with five such diamonds surrounding the north pole and
five the south pole. These may be indexed as shown in Figure 4.2.
Furthermore, the nodes associated with a given diamond can be
indexed with a pair of indices (i1,i2) as shown in Figure 4.3. These
same indices may also be used to label the triangles or elements in the
grid. Two triangles may be identified uniquely with each node (except
for the polar nodes). A third index, designated ie, is utilized to
distinguish the two elements. The convention chosen is to assign the
triangle closest to the pole the index ie = 1 and the other the index
ie = 2. Figure 4.3 illustrates this convention for the two triangles
associated with node (6,1).

For programming convenience, (n * 2) x (n * 2) nodes are
indexed on each diamond. This provides a complete set of boundary
points for the n x n points naturally identified with each diamond.
With periodic refreshing of field values at these boundary points, much
of the computation for a given diamond can be done independently from
the others. This suggests a logical way to partition a problem for a
computer with multiple processors. One diamond, or a small number of

connected diamonds, is assigned to each processor. During the course

20
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iamo
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Figure 4.3. Indexing convention for the nodes and triangles of
an icosahedral diamond associated with (a) the north pole and (b) the
south pole.
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of the calculation, boundary information is periodically exchanged
among processors. Since the boundaries are of lower dimensionality
than the diamonds themselves, relatively high efficiency may be
achieved. For a vector processor, the two indices (i1,i2) can
frequently be combined into a single index to obtain long vectors of
field data with consequent improvement in computational speed.

An attractive feature of the icosahedral grid to be noted at this
point is its symmetry. A scalar operator like the Laplacian, for
example, need be generated and stored only for one of the ten
diamonds. Indeed, each diamond itself has additional symmetries which
can be exploited with even further savings in operator storage.

Still another benefit of the hierarchy of grids constructed by
successive dyadic refinements is that all the nodes of the coarser grids
are contained in the finer grids, and the nodes in the finer grids are
related in a simple way to the nodes in the coarser grids. This
provides for simple and inexpensive interpolation and projection of
fields among grid levels. This feature is a key to the high
performance of the multigrid elliptic solver to be considered in
Chapter 5.

The dyadic icosahedral mesh can be replicated in the radial
direction to discretize a thick spherical shell. The procedure is to
assign a set of the 2 * 10n? nodes belonging to a given dyadic
refinement to each of n * 1 radial positions in the shell. Two of these
radial positions are the inner and outer shell boundaries, The
indexing convention shown in Figure 4.4 assigns index i3 = 1 to the

set of nodes at the inner boundary and i3 = n + 1 to the set of nodes

23



at the outer boundary. These n * 1 sets of nodes are aligned so that
all nodes lie along 2 * 10n? distinct radial vectors. The
three-dimensional elements defined by this grid are the triangular
prisms evident in Figure 4.4. There are n layers of such elements.
Note that the spacing of the n - 1 radial node positions in the shell
interior may be nonuniform. Indeed, because of the boundary layer
character of the convective flow, it is advantageous to concentrate the
nodes near the shell boundaries. Before considering further the
discretization of the full spherical shell, however, it will be useful to
focus attention on some additional features of the icosahedral

discretization of the two-sphere itself.
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i3
Figure 4.4. Indexing convention for radial discretization of a

spherical shell.
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4.3 SPHERICAL BARYCENTRIC COORDINATES

The dyadic refinement procedure provides a convenient means for
determining what will be referred to as spherical barycentric
coordinates for the spherical triangles. These spherical barycentric
coordinates in turn are used to define the special finite elements on
which the discrete formulation is based.

Definition 4.1: The vector function n = (nl,nz,nB) is defined as

the barycentric coordinates for the triangle T if it satisfies the
following four conditions:
i) n is an affine function of arc length on the three edges of T
i) n takes the values (1,0,0), (0,1,0), and (0,0,1) respectively
at vertices 1, 2, and 3 of T.
iii)  n is continuous on T.
iv) n is related to the barycentric coordinates nt, n%, n?, and n*

on the four subtriangles T1, T2, T3, and T4 of the dyadic

subdivision of T by the equation (see Figure 4.5 for the

convention used in labeling the subtriangles).

[ G5 + 3y, 4my,my) on T,

s 25302
| Gl + s hns) on T,
(lfn.' );ﬁnzali + ;!ns) on T3

< 4 4
| et o) on T, Ui
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Figure 4.5. Convention for labeling triangles and vertices in
the dyadic subdivision of a spherical triangle.
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We note that all four conditions of Definition 4.1 are satisfied by
barycentric coordinates on a plane triangle. Condition (i) is weaker
than the usual requirement that n be affine within the triangle as well
as on its edges. This is the reason for the other three conditions and
condition (iv) in particular. One observes that (i) and (ii) together
imply that n assumes the values (0,%,%), (4,0,4), and (3,2,0) at the
midpoints of the three sides of T. Furthermore, (iv) together with (i)
imply that n is affine on the three geodesic arcs connecting these
vertices. Moreover, (iv) allows us to connect the midpoints of the
sides of the smaller triangles in the same fashion. If we can continue
the dyadic refinement process, we find that n is defined on a dense
network of geodesic arcs within triangle T, and the continuity

specified in (iii) defines n uniquely everywhere with T.

4.4 APPROXIMATION SPACE FOR THE TWO-SPHERE

The spherical barycentric coordinates just described immediately
provide a means for defining a finite-dimensional approximation space
on the two-sphere.

Definition 4.2: For any given spherical triangulation define the

space S to be the space of all continuous real functions s on the
sphere with the property that for each triangle T in the triangulation

there is a triple (a],az,a3) of real numbers such that

- (4.2)
s(x) a"n1 + az"z + azNy
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for all points x in T. These functions s belonging to S vary in an
affine manner along the geodesic arcs which define the triangulation
just as do the barycentric coordinates from which they may be
constructed. In general, they display slope discontinuities at triangle
boundaries. They are analogous to the piecewise linear functions
defined on triangulations of the plane.

A local basis for S in terms of the nodes of the triangulation may
readily be defined.

Definition 4.3: For each node i of a given spherical

triangulation, denote by Li that element of the spherical finite-element

space S which assumes the value 1 at node i and vanishes at all other

nodes. The set of functions (Li} define a basis for S; that is, for
every s £ S there is an array of coefficients {si}, one for each node,

such that

s(x) = SILI(X) (4.3)

for all points x on the sphere.

That {Li} is a basis for S is evident, since each barycentric
coordinate for each of the triangles is represented in (Li}' Indeed,
the basis function Li assumes identically the value of the barycentric

coordinate associated with node i in each of the five or six

surrounding triangles.
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4.5 APPROXIMATION ERROR
One measure of the resolution of a spherical triangulation T is the
maximum arc length h of any edge in the triangulation. A slightly

more sensitive measure is h given by

M = 1im 2™eT™, (4.4)
me

th

where T denotes the m dyadic refinement of the triangulation T.

K r for the kth

Numerically it may be computed that h = 1.32317 2~
dyadic refinement of the spherical icosahedron with radius r.

A bound on the error in the representation of a smooth
function u in the finite-element space S is provided by the following
theorem:

Theorem 4.1: For any dyadic refinement T of the regular
spherical icosahedron and any function u with a bounded second

derivative u”, there is a function s in the spherical finite-element

space S such that
32
ls - dfl, < -‘-s—llu"l!‘,° ] (4.5)

where -I'-\ is the mesh constant of the triangulation.
Proof: Let s be the element of S which agrees at all nodes of the
triangulation. At the midpoint of any side in the triangulation, one

has

ls=u] & F flurfl (4.6)
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since |s-u| can have no more than parabolic variation between two

nodes with its maximum value given by #/u" II“(E/Z)z. At midpoints of

the edges of a further dyadic refinement T' of T one has

.k
ls - u] = Tt ﬂu"lcm s (4.7)

Repeating the process, one finds that at the nodes of the mth

refinement

[ (S + = llul,

8 (4.8)

The bound Ilu"ll;f;z/G follows upon taking the limit, since both u and s

are continuous.

Corollary: The space Sn of spherical finite elements on the

dyadic icosahedral triangulation with 20n? elements of the unit sphere

has a member s which satisfies
Is - ull_< 0.224 a7 2urll_ . (4.9)

Proof: It may be determined numerically that h < 1.3232/n for
the dyadic triangulations of the unit sphere.

We note at this point that Theorem 4.1 implies that the spherical
finite-element spaces of Definition 4.2 approximate smooth functions to
second order. That is, each dyadic refinement reduces the

approximation error by a factor of four.
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4.6 SOLUTION OF A DIFFERENTIAL EQUATION ON THE TWO-
SPHERE

Next let us consider the discretization of a differential equation
using the spherical finite-element approximation spaces just described.
Let us apply the Galerkin formulation (3.12), assume free boundary

conditions, and take the differential operation Djk to be the Laplacian,
amam, with the Cartesian spatial coordinates x = (x1,x2,x3) as

independent variables. The system then for which we seek 3 solution

is
- - g (4.40)
amamuk(x) ER dk(x) o, k:m-A- 253

At this point we allow dk to be any integrable function on the sphere.
The Galerkin procedure yields an approximate solution Gk(x) in terms

of the spherical finite-element basis function (Li}'

A o > 4.11)
uk(x) akJLJ(x) (

The coefficients akj are obtained by solving the linear systems

2
A,.a . +¢C = 0, 1,I=4, ..., 2#10 n“ ,
k) Ik k = 1:3 (4.12)
where
A = L.(x)3 3 L.(x)da (4.13)
H sphere ! LR
d
e =_[ L0 da . (4.14)
phere
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Note that this formulation is simplified compared with (3.12) because

the Laplacian is a scalar operator. Here a denotes area and n = 2P,
where p is the dyadic refinement index. Integrating (4.13) by parts
yields

A e 3,4 00008 L.(x)1da
N Lohere- m-1 2103, L 0x) 1da (4.15)

Representation (4.15) is sometimes referred to as the weak form of
representation (4.13). The weak form is required here since the

spherical basis functions have only Co continuity.
Let us examine how the matrices Aij and C;x may be computed.
For notational simplicity let <y,z> denocte integration of the inner

product ye*z over the two-sphere. Aij and € may then be expressed

S B <Ll’dk> A (4.17)

As noted previously, the basis function Li assumes the value of the

barycentric coordinate associated with node i in each of the
surrounding five or six triangles. That is, if triangle T has node i as

a vertex and x ¢ T, then

L (x) = n.{(x). (4.18)
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It is therefore sufficient to compute the quantities <amni,3mnj> and
<"i’dk> on each of the triangles and then use these quantities to
assemble the matrices <8mLi,aij> and <Li,dk>.

To achieve a high level of accuracy it is convenient to compute

<am"i’am"j> and <"i'dk> on a grid much finer than that used for

(4.3). Simple recursion formulas, based on the relationship of the
barycentric coordinates of successive dyadic refinements given in
Definition 4.1, may be derived for interpolating these quantities to
coarser meshes. Referring to equation (4.1), one finds, for example,

that <8mni,amnj> for a triangle on a given mesh can be expressed in

terms of the four subtriangles on the next dyadic refinement as

B~

- 1 P, P
<3Ny 230> §<8mn,.3mnj> 3 (4.19)

In a similar fashion one obtains for <“i’dk> the relation

1
<n.,d,> = i{g‘”?'dk’ +<t,d> - <n"‘,dk>] ; (4.20)

Table 4.1 provides a complete list of the recursion formulas for zero-,
first-, and second-order operators in terms of the approximation
space S.

The task of computing <amni,amnj> on a spherical triangle will now

be addressed. The quantity 3,0 represents the spatial gradient of
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Table 4.1. Recursion relations for elementary
operators on the two-sphere.

4
<q,1> = 3 <1,1>p
p=1
> 4 i
<n],1> = = <n],‘l>p - <n',1> +<1,1> + <1,1>4]
p=1
4
<rk,1> = E <rk,1>p
p=1
3 - 2
<akn],1> = %[p§1<akni,1> - <akn1,1> ]
5 p 4 i 4
<n,,r,> = [ T <n, ,t 5" = <n,,F > + < 15 4 <F L1
i* K =i 1k k k!>
5 p
<33 n> = [T <Qpn;adyn > ]
J p=1
X i i ¢
> = [ T <n ,n.>p + <1,1> 5, . + <n ,1>‘I + <n.,1>' + <1,1>
J 2 it j
4 4
-<ni,1> -<nJ.,1>]
4
<rk,?m> = E1<Fk,rm>p
p=
: D i 4
<"i’aknj> = *[p£1<ni,aknj> - <ak"]’1> = <3k"j’1> ]
g p i J
<nl,rknj> = ﬁ[pii<ni,FknJ> - <rk,1> Glj +<ng,F>T F <nj,rk>

~ 4 A~ 4 A 4
+ <rk,1> - <np,h> - <nJ,rk> ]
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Table 4.1 (Cont.)

3
- e =1 e U -~ 4
AT ’[p;‘ak“l'rm’ Qenpar> ']
~ -~ 3 -~ -~ p ~ ~ 4 ~ ~ } ~ ~ 4
<rkni'rm> = %[p§1<rkn1)rm> - <r‘kﬂi .l"m> + <r‘k,f‘m> + <rk)rm> ]
g P
<ak“l'amnj> ) &pi1<akni'aan>
»~ 4 -~ p A~ J 4
<akn',ran> = ﬁ[p§1<aknl,rmnj> F<dun,,rot - <dn,, i ]
<t n,rn> = [z <rn.,rnsP +<r L7 g oty n.,r >
k' 'm'j p=1 k'i?'m'j kK’ m iJ k'l" m

e T T G g RS- Q-
mj’ k k’ m K" m mj’ k

NOTE: Subiriangles are defined as shown in Flgure 4.5. The quantity
r, is the unlt vector in the radial direction. Integration Is

k
over individual triangles.
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the spherical barycentric coordinate n;. In the case of a plane

triangle, the gradient of a barycentric coordinate has a direction
perpendicular to its associated side, lies in the plane of the triangle,
and has a constant magnitude equal to one divided by the
perpendicular distance between the side and the node. For a spherical
triangle, on the other hand, the direction of the gradient varies over
the spherical surface. As an integrated or averaged value is
required, a quadrature approach is taken. The scheme uses a
weighted sum of unit vectors normal to the planes defined by the

triangle edges and the center of the sphere and pointing inward
relative to the triangle. Let qjm denote the jth component of the unit
normal associated with triangle side m, Bm the angle subtended by

triangle side m relative to the center of the sphere, i' and i" the
nodes in the triangle different from i, 2 and ¢" the nodes different
from £, and A the area of the triangle. The quadrature formula may

then be expressed

<ajnl'ajn£> N g(elqllls - GIIQJI|/6 = e'nqj]n/s)

It may readily be verified that in the limit the formula reduces to the
result obtainable for a plane triangle. Numerical experience shows this
formulation to yield highly satisfactory results. Table 4.2 gives a list
of formulas for computing each of the zero-, first-, and second-order
differential operators for the spherical icosahedral grid. Some of these

like (4.21) are approximations, while others are exact.
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Table 4.2. Formulas for eilementary operators
on the two-sphare

]
>

<1,1>

<“I'1> = A/3

<Fk,1> = A(xk1 t Xy t xks)/3
@unpat> = (0,0 = 380G0 - TG /3
<"i’Fk> = AF%'
<aknl'3knj> = <ak"l'1><aknj’1>/A

<n‘,nj> = A1 +5'J.)/12

<Fk,Fm> = <Fk,1><Fm,1>/A
<n',aknJ> = <aknJ,1>/3
‘"t'Fk”J> = AFkJ(1 + 5ij)/42
Bnpafpr = <dnp ey
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Table 4.2 (Cont.)

<Pnpf> = AT T/
<3kni’8mnj> = <aan,1><3an,1>/A
<8kni'rm"j> = <8kni’1>rmj/3
<rkni,rmnj> = Arklrm_[“ + BU)/12
$; = angle subtended relative to center of sphere by friangle side i

n

= Cartesian coordinate k of triangle vertex i

Cartesian component k of the unit normal to the plane containing
triangle side i and the center of the sphere, pointing inward
relative to the triangle |

(xki + %xki' + ixkin)/Z, where i' and 1" denote the triangle
vertices different from |

fan'1[{Tan[(¢1+¢2+¢3)/4]*3"[(¢1+¢2)/4]+an[(¢2+¢3)/4]

-?an[(¢3+¢1)/4]}%]

Kronecker delta
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To illustrate the practicality of the approach described thus far,
a numerical experiment will now be presented (Baumgardner and

Frederickson, 1985). Consider the differential equation

3. U = S (4.22)

where Sk is a vector (toroidal) spherical harmonic of Legendre degree

L. Since the spherical harmonics are eigenfunctions of the Laplacian

operator on the iwo-sphere, with eigenvalue L(L * 1),

a3S = L(L+1)S

mom Sk K (4.23)

we have a convenient analytical check for the numerical solutions.
The system of equations (4.12) is solved using the fast multigrid

elliptic solver described in Chapter 5. The function dk in (4.17) is
the spherical harmonic Sk' Results for three harmonic degrees and

four mesh refinements are summarized in Table 4.3.

In all cases, the discrete operator <amLi,aij> was generated on

the n = 128 grid and projected to the level at which it was used.
Similarly, the spherical harmonic was generated at n = 256, and a

quadrature procedure used to evaluate <Li’sk>' The intent was to

make these two sources of error small relative to the intrinsic error
treated in Theorem 4.1.
Two measures of error are given in Table 4.3. The first is the

quotient <Sk,Sk>/<Gk,Sk> of inner products that would equal the

eigenvalue of the toroidal spherical harmonic had the computation been
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Table 4.3,

Performance of discrete Laplacian operator on
the ftwo-sphere using spherical harmenics of

degree L.
L =2 L =4 L=28
i o R P S b e ey
n Kk’ "k ol k’7K k' 7k o Seconds
8 | 6.03747 0.01096 | 20.5137 0.03693 79.1670 0.12285 0.18
16 | 6.00927 0.00278 | 20.1268 0.00988 | 73.7144 0.03408 0.35
32 | 6.00223 0.00075 | 20.0313 0.00264 | 72.42% 0.00892 0.95
654 5.00047 0.00020 | 20.0075 0.00070 | 72.1045 0.00227 S22
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done exactly. The inner products were evaluated at two dyadic
refinements above the level at which the solution was obtained, which
amounts to using a quadrature formula with 15 points per triangle.

. A » -
The second measure of error was simply [u - uII’/IIUJ‘ , the maximum
-

relative error between the exact solution u and the computed
solution 4. Note that both measures of the error display the
second-order behavior predicted by Theorem 4.1. The observed error
is only slightly greater than the bound on the basis function
discretization error given by Theorem 4.1. The difference is due to
the additional small sources of error involved in the experiment.

A Cray-1 computer was used to perform these calculations. The
times shown are for ten iterations of the multigrid algorithm, which in
every case reduced the residual by a factor of at least 10°* — more
than sufficient for the precision shown. We note that the n = 64 case
involves a system of 3(2 *+ 10 n?) = 122886 simultaneous linear
equations. This experiment thus provides confirmation of second-order
accuracy of the spherical finite-element formulation, is a strong test of
the correctness of the software, and demonstrates the feasibility of

large scale numerical calculations in spherical geometries.

4.7 3-D APPROXIMATION SPACES

The finite-element formulation for the two-sphere may be extended
to the spherical shell by adding the radial dimension. Since the radial
coordinate is everywhere orthogonal to the tangential spherical
barycentric coordinates, it is possible to retain the tangential

discretization with all its features and introduce a convenient radial
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discretization. The fully three-dimensional nodal basis functions then

become Cartesian products of the tangential basis functions {Li}

previously described and a set of radial basis functions which may be

denoted {Mj} and defined as follows.

Definition 4.4: Let {rj} represent any set of n * 1 distinct

points on the real interval (r1,rn+]). Let R be the space of all
continuous real functions on the interval (r],rnﬂ) which are piecewise
linear between neighboring points in {rj}. The space R is chosen as

the radial approximation space for a grid with nodes at radial positions

given by (r'j} :

Definition 4.5: For each radial index j of a given radial

discretization {rj}, denote by Mj that element of R which assumes the
value one at r,. and vanishes at all other radial nodal positions. The
set of functions {MJ.} define the radial finite-element basis for R.

This space of one-dimensional piecewise linear functions is well
known (Zienkiewicz, p. 34) to have second-order convergence
properties.

An approximation space Q of nodal functions for the spherical
shell may now be defined as the Cartesian product of the spaces S and
R of Definitions 4.2 and 4.4, respectively. Furthermore, a set of

basis functions {Nk} for the space Q is provided by the Cartesian
product of the basis functions “‘i} and {Mj} of Definitions 4.3 and

4.5, respectively.
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An approximation space on the cells or elements of the

three-dimensional grid may also be specified.

Definition 4.6: Let {ci} represent the 20n? subdomains or cells

associated with the spherical icosahedral grid for a spherical shell.
Let P be the space of all real functions on the volume of the shell

which have constant values on each of the subdomains in (ci}. This

space P is defined as the finite-element approximation space for the
cells of the grid.

Definition 4.7: For each subdomain or cell c; in the icosahedral

grid for a spherical shell, denote by Ki that element of P which
assumes the value one on <, and vanishes elsewhere. The set of
functions {K‘} defines a basis for P,

Hence functions in the approximate space P for quantities defined
on the cells are piecewise constant.

At this point it is possible to assign a finite-element
approximation space to each of the variables in the system of equations

(2.15)-(2.18) used to model the thermal convection. The velocity u; is

approximated in terms of the piecewise linear nodal approximation
space Q. The density p, temperature T, pressure p, and radiogenic
heat generation H, on the other hand, are approximated in terms of
the piecewise constant cell approximation space P. The gravitational

acceleration g; will be assumed spherically symmetric and be

represented in terms of a low-order polynomial in r.



4.8 3-D DISCRETIZATION OF THE LAPLACIAN OPERATOR

Let us now consider the discretization of the Laplacian operator in
the space Q. In a manner analogous to the development of section
4.6, the finite-element representation of the weak form for the

Laplacian operator may be expressed

A = - (3 N.)(3 N,)dV y (4,24)
iJ ‘[hell mi mJ

or in more compact notation, Aij - -<amNi,8mNj>, where the < , >

notation here implies the inner product integrated over the volume of

the spherical shell. Since the basis functions {Ni} are products of

tangential and radial functions, it will be convenient for a while to
switch from Cartesian tensor notation to a spherical coordinate
notation, where n is used to denote the tangential coordinates and r

the radial coordinate. The basis functions then may be written
N'(n,r) = L‘(n)M‘(r) . (4.25)

Expressing Aij in V notation as -<VNi,VNj>, noting that in spherical

coordinates V = (1/r)vn + ?(a/ar), and using (4.25), we find

MV L oMy, M AL, 2wy

1J T B e T AT B e Jar

>
1]

1. 1
=L Mir M r<anl’anJ n

3 A 4.26
$ oM MJ> <L, L_])n] - (4.26)
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where \7,1 represents the tangential gradient, ™ the unit vector in the
radial direction, <y,z> the volume integralfy‘z r*dr, and <Y'Z>n the

surface integral of the inner product y*z over the sphere. Since the

functions {Li} vary only in the tangential direction, the full gradient

operator can be used in place of Vn, and 4.26 may be rewritten

lus><ar,aLe
Jr

1
By om b m17%m g7

1J ol

Ay O > (4.27)
+ g Mg Mp <Ll ]

We note this expression for Aij contains the tangential operator
<amLi'aij>n obtained in Section 4.6 for the discrete Laplacian on the

two-sphere. The procedure for computing this operator has already

been described. The tangential operator <Li'Lj>n may be computed in

a similar manner from the formula given in Table 4.2. The radial

factors <(1/|")Mi,(1/r)Mj>’~ and <(a/ar)Mi,(a/ar)Mj>r involve integration

of low-order polynomials in r. The results are summarized as follows:

<A/oM /M = [ (r, .4 = r;)/6, node J in layer
j of nodes just above
that of 1
(r'+1 - rI)/B

+(r' - ri_i)/B, node | In same
layer as |

(r; = r;_4)/6, node j In layer just
below that of | (4.28)
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2 2
Uiag B gl 2 F
<(8/3r)M',(3/3r)MJ> . Fer e , node | In layer
i+ i of nodes just
above that of i
2 2
Ml Nt
3(ri+1 - r')
2 2
S Y N1, node  in same
] R e layer as i
I 1-1
"? Tyl = r?-1
e =) » hode j In layer
I I=1 Just below that
‘ of I . (4.29)
Here r denotes the radius of the layer of nodes containing node i. At

the boundaries, terms involving a nonexistent layer are dropped.
Table 4.4 provides a list of radial factors from which a variety of
three-dimensional operators may be constructed.

Since Aij may be assembled inexpensively from two-dimensional

tangential operators and one-dimensional radial operators, it is logical
to store only the lower-dimensional components and assemble the
three-dimensional operator as it is applied. This reduces significantly
the storage requirements. As indicated earlier, the operator need be
created for only one icosahedral diamond of the ten, which cuts the
storage by an additional factor of ten. It also trims by a factor of ten
the overhead for assembling the 3-D operator.

We note that for a given node i, the finite-element operator Aij in

general is nonzero for only 21 values of the node index j. These 21
nodes include node i and the six nodes surrounding i at the same

radius plus corresponding nodes in the layer above and the layer
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below. Exceptions are at the shell boundaries and the pentagonal
nodes, which have but five surrounding nodes. Therefore, the cost

in machine multiplications for performing the matrix multiplication Aijyj

is about 21 times the number of nodes in the grid.

4.9 DISCRETIZATION OF VP
As indicated in Section 4.7 the pressure p is discretized in the
piecewise constant approximation space P. In terms of the basis

functions (Km) the pressure may be expressed as mem’ where P s

the pressure associated with cell m. The Galerkin representation for

the pressure gradient term in (2.15), here denoted hik' is

h,

ik = <N|,3ka>pm . (4.30)

where < , > denotes the volume integral of the product. Since Km

does not have Co continuity, (4.30) is integrated by parts to yield

S - 4.
hik <akNI’Km>pm < P fA Ninde ’ (4.31)

where A represents the boundary surfaces of the cell and Ny is kth

Cartesian component of the unit normal to the cell surface.

The surface integrals resulting from the integration by parts
cancel identically at all nodes i in the shell interior. On the shell
boundaries, these integrals vyield radial nodal forces which are
balanced by the external pressure on the shell. However, in the

applications treated in this dissertation, the shell boundaries are
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assumed undeformable, and the radial forces at the boundary nodes do
not enter the problem.

The operator <akNi’Km> may be written as a sum of products of

tangential and radial components

<akN',K > = <akL’,K > <(1/r)M K > + “k"l’K > <(a/ar)M!,K > (4,32)

= <, l,1> <(1/r)M, K R <n';‘,Fk>n<(a/ar>M,,Km>r ' (4,33)

where nim is the barycentric coordinate associated with node i in

cell m, ?k is the unit vector in the radial direction, and < , >n and

2y >r are as defined in the previous section.
The tangential operators <akni,1>n and <ni,?k>n may be computed

from the formulas in Table 4.2 on a very fine grid and then projected
to the grid on which the convection calculation is to be performed
using the recursion relations in Table 4.1. Formulas for the radial

operators <(1/r)Mi’Km>r and <(a/ar)Mi,Km>r obtained by integrating

’

low-order polynomials in r, are listed in Table 4.4. As in the case of
the discrete Laplacian operator, the 3-D cell-to-node gradient operator

<akNi.Km> may be stored in unassembled form and assembled as it is

applied.
Two tests were used to evaluate the correctness and accuracy of
this operator. In the first, the gradient operator was applied to a

constant unit-amplitude scalar field. The RMS value of the resulting
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vector field at the nodes (except for those at the shell boundaries)
was multiplied by the number of nodes, divided by the shell volume,
and multiplied by the shell radius for normalization. Since the
gradient of a constant field is zero, departure from zero is a measure
of the error. For an n = 8 grid, this test gave a normalized error of
9.76 x 107°, and for an n = 16 grid, 1.52 x 10~%, |n the second test,
a set of random numbers, uniformly distributed on the interval
(0.0,2.0), was used to specify the scalar field. The components of
the vector field obtained by applying the gradient operator to this
scalar field were summed and the sum divided by shell volume and
multiplied by the shell radius. Since the integral of the gradient of
any such function with compact support vanishes, the exact solution
for this test is also zero. The results were 5.49 x 10~!¢ for an n = 8
grid and 6.10 x 107** for an n = 16 grid. Both tests imply an

acceptable level of accuracy for this operator.

4.10 DISCRETIZATION OF THE BUOYANCY FORCE
Like the pressure, the density p is also discretized in the
piecewise constant approximation space P. The discretized density

field, expressed in terms of the basis functions {Km}, is Pme' where
®m is the density associated with cell m. The gravitational acceleration
I for simplicity, may be assumed spherically symmetric and be

represented by a low-order polynomial ¥(r) such that

g, = gorkY(r) (4.34)
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The finite-element representation of the buoyancy force in (2.15) may

then be written

r - 4.35)
< go<NI’rY(r)Km>°m (

1k

The operator <Ni,?k7{(r)Km> can be factored into tangential and radial

components

<L, ,F K> <M y(r),K > (4.36)
n | mr

<N, ,F'ky(r‘)Km> 12"k%

= <nT'Fk>n<MiY(r).m>r . (4'37)

where nim is the spherical barycentric coordinate associated with

node i in cell m. The tangential operator is computed using Tables
4.1 and 4.2. For the case of constant gravitational acceleration,

¥(r) =1, and the radial factor is <Mi’Km>r' Similarly, for 9y
increasing linearly with r, ¥(r) = r/rmax' In both cases the radial

factors represent integrals of low-order polynomials in r which are

listed in Table 4.4. Higher-order polynomial representations for Ik

may be handled in like fashion.

This operator was checked for correctness and accuracy using
two tests. The first applied the buoyancy operator to a shell with a
constant unit-amplitude density field and a unit-amplitude gravity
field. The vector sum over all nodes, normalized by the volume of the
shell, of the resulting vector field corresponds to the normalized net

buoyancy, which vanishes for the exact case. For an n = 8 grid, the



magnitude of this normalized net buoyancy was 3.40 x 107'*, and for
an n = 16 grid, it was 2.08 x 103,

The second test compared the magnitude of the force acting on
individual cells as computed by the operator against a simpler and less
accurate method which integrates the gravity field magnitude over the
cell volume and then multiplies the result by the cell density. For the
n =8 case, the fractional difference between the two methods was
9.03 x 107* both for uniform gravity and for gravity increasing
linearly with radius. For the n = 16 case, the fractional difference
was 2.28 x 10"“. Most of the error is in the simpler method which
does not account for the central nature of the vector gravity field.

These tests imply an acceptable level of accuracy for this operator.

4.11 DISCRETE FORM OF THE FORCE BALANCE EQUATION
It is now possible to express the finite-element equivalent of
(2.15). Let the approximation to the velocity field in terms of the

nodal basis functions be written

N q (4.38)

The discrete version of (2.15) then consists of the following system of

linear equations

4, ..., 2 +10 n?
45> ' (4.39)

he, + f

n
o
-
L |

R S s Dl 1



where Aij' hik' and fik are defined by (4.27), (4.31), and (4.35),

respectively, and u is the dynamic shear viscosity. Here n depends
on the dyadic refinement of the grid as discussed in Section 4.1. The
next chapter describes a technique for solving this elliptic system of

equations in an efficient fashion for the unknown coefficients ukj'

The mass and energy conservation equations (2.16) and 2.17)
utilize the same finite-element approximation spaces described in
Section 4.7. Details of their finite-element implementation and method

of solution, however, are reserved for Chapter 6.
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5. MULTIGRID SOLUTION TECHNIQUE FOR FORCE
BALANCE EQUATION

The multigrid technique used to solve the linear system (4.39)
was conceived and developed by Paul O. Frederickson, presently at
Los Alamos National Laboratory. A detailed discussion of the algorithm
together with examples of its performance are included in a paper to
appear (Frederickson). Its application to the 3-D spherical problem is

described below.

5.1 THE MULTIGRID ALGORITHM

Suppose a solution is sought for the discrete system
Wy = a, (5.1)

where W is a linear operator on the nodal approximation space for a

th

3-D grid constructed from the m dyadic refinement of the spherical

icosahedron. Let us denote this space as Qm. By inspection of the
basis functions (Li) and (Mi}, whose Cartesian product forms the basis
functions {Ni) (see Chapter 4), it is simple to show that

00=Q1="'= ch ...ch. That is, the approximation space Qk for a

given dyadic refinement k is a subspace of the approximation spaces of
all further dyadic refinements.

This sequence of nested approximation spaces is ideally‘ suitg_d for
applying an iterative multigrid algorithm to solve system (5.1) in a
highly efficient manner. As will become evident in the following

discussion the efficiency is obtained because only an inexpensive local
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approximate inverse is needed to refine the solution interpolated from
the next lower approximation space.

Let us now examine how such an algorithm works. For notational
simplicity let superscript (n) represent the iteration number and
subscript k the dyadic refinement index for the approximation space

involved. At the beginning of iteration n, we have an approximate

: (n-1)
solution Vi

from the preceding iteration. (To start the

procedure, the null vector can be used for v(o).)

The first step in the algorithm is to compute the residual '

r = a-yy"n

= e T, (5.2)

This residual L is then projected onto each of the lower-order
approximation spaces Qm-1 PRI, QO to provide coarser representations
of the residual, r Dror T e

m-1 0

In the lowest-order space QO' the system
| G e B (5.3)

is solved by standard algebraic techniques (inexpensive since the

system is small) for the correction field z. This correction Z is then
interpolated onto space Q] as z, and refined by wuse of the
residual rq The refined correction field, denoted z1', is computed by

finding a second-order residual
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Y1 = r1 -W1Z1 (5.4)

-

to which an approximate inverse W1'1 is applied and the result added

to zZy that is,

.-

) o
z4 z, + w1 Yq (5.5)

The refined correction z]' on Q1 is now interpolated onto Q2 and
further refined using ry- This procedure is continued until a refined

correction zm' is obtained on space Qm' This correction is now added

to the previous estimate vm(n-” for the solution to obtain an improved

(n):

solution v
m

V(n) = v(n‘1)+ z';' (5.6)

m m
The process converges rapidly, typically with a factor of three to five

reduction in the RMS norm of the residual Fm Per iteration for the 3-D

problem.
The cost per iteration for this algorithm corresponds to less than

that of four applications at the operator Wm. How this is true may be

understood as follows. First of all, the projections and interpolations
are simple and inexpensive because of the nestedness of the
approximation spaces. Further, since the size of the linear system
decreases by a factor of eight for a 3-D grid each time the dyadic

index decreases by one, the vast majority of the computational cost is
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associated with the finest discretization Qm. Finally, as will be

discussed in the next section, the approximate inverse operators qu

are chosen to have the same graph (and hence the same cost to apply)

as the forward operators Wk. In the approximation space Qm' there

are three applications of the operators Wm and Wm-l‘

A 21-point scalar operator like the 3-D Laplacian applied to a
field with three spatial components requires close to 63 N
multiplications, where N is dimensionality of the approximation space.
For such an operator the cost per iteration of the multigrid algorithm
is therefore about 250 N multiplications. The fact that the cost is
linear with N means that the multigrid approach offers significant
savings in computational effort for large problems compared with other

numerical techniques currently in use.

5.2 LEAST-SQUARES LOCAL APPROXIMATE INVERSE

A crucial feature in the multigrid algorithm just described is the

~
local approximate inverse Wk . This section outlines a procedure for

computing the optimum inverse operator in the least squares sense,
subject to the constraint that the inverse operator have the same
graph as the forward operator.

The problem is to find the operator Y which minimizes the

functional

N
f(Y) = Zdiag [(I- vz -] (5.7)
=1
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where W is a linear operator on the N-dimensional approximation space
and Y has the same graph as W. We shall use the fact that for this

optimum Y,

gV = limT[#(y - €™ - $n] = o (5.8)
m sop
for all values of m and n, where E™ is the matrix which has unit

th element and is zero otherwise. With double

value for its mn
subscripts to denote output and input indices for the operators, (5.7)

may be rewritten

= - - 09)
f(yY) N YUN“ WJIYU + Yljwjkwlkrlf. , (5

and gmn(Y) may be expressed

1
g (Y) = Lm s l-2ew 4 eW W, ¥,

2
+ ‘ijwjkwnk + 0(e“) ] . (5.10)

We observe that for Smn to vanish, we need Y to satisfy

Wo= Wy . (5.11)

Given the operator W, one may use standard linear algebra routines to
compute Y from (5.11). Since W for the problems of interest is a local
operator, the cost of this procedure is relatively modest. For the 3-D

Laplacian, this involves solving a rank 21 linear system at each node
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for one diamond in the grid. Some additional features of local

least-squares approximate inverses are described by Benson and

Frederickson (1982).
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6. DISCRETE FORMULATION OF MASS AND ENERGY
CONSERVATION

This chapter describes the methods used to treat the advection,
thermal conduction, and time integration of the mass and energy
conservation equations (2.16) and (2.17) in terms of the discretization

of Chapter 4.

6.1 CELL-WALL ADVECTION

The discrete method selected for treating the advection of mass
and heat is referred to as cell-wall advection since mass and heat are
transferred only between cells that share a common face. The
advection depends on the sign and magnitude of the normal velocity
integrated over the area of the common face as well as the values of
density, temperature, and specific heat of the cell for which the
integrated normal velocity is outward. This method offers the
advantages that it is simple to implement and that mass and heat are
strictly conserved.

As may be noted from Figure 4.4, cells in the 3-D icosahedral
grid have the form of triangular prisms with three planar faces and
two spherical ones. Advection through the planar faces will be
referred to as tangential and that through the spherical faces as
radial. In both cases, computing the integral of the normal velocity
over the face area is accomplished by multiplying the normal velocities
at the vertices of the face by appropriate weighting factors and
summing. For the planar faces, the weighting factors for the nodes at

the inner radius . of the face are given by (2ri * ro)(ro - ri)¢/12
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while for the nodes at the outer radius 2 they are (ri + 2r°)(r0 -
ri)¢/12, where ¢ is the angle subtended by the face. For the

spherical faces, the weighting factors correspond to the tangential

finite-element operator <ni,?k> described in Section 4.9.

Performing the advection calculation first involves resolving the
velocity field into radial and tangential components at each of the
nodes. Next, integrated normal velocities are computed for each face.
Finally, rates of change of mass and heat are calculated for all the
cells by accumulating the contributions across all the faces. The rate
of mass advection through a given face is the integrated normal
velocity times the density of the donor cell. (Recall the discretization
of density assigns a constant value to each cell.) Similarly, the rate
of heat advection is the product of the donor cell density, specific
heat, and temperature, and the face integrated normal velocity.

This method introduces a slight error in the integration of the
normal velocity on the spherical faces. The error becomes negligible
as the discretization becomes fine and the spherical triangles have only
small variation in normal direction. A numerical experiment to quantify
the magnitude of this error uses a uniform translational velocity field
across a spherical shell of uniform density. The rate of change of
mass in the cells not adjacent to the shell boundaries should be zero.
The computed rate of change in mass compared with the rate of mass
flow through these cells is a measure of the error. The RMS value of
this error for an n = 8 grid is 1.8 x 10°®* and for an n = 16 grid is
9.8 x 10°*. The same experiment was performed for heat advection

with identical results. Since the translational velocity field produces
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advective flow through cells having a variety of spatial orientations
with respect to the flow, this experiment provides a strong test on the
correctness of the software as well. |t may be concluded from the
experiment that the method used for the advection is accurate as well

as conservative.

6.2 DISCRETIZATION OF THERMAL CONDUCTION

Thermal conduction is treated in a manner similar to advection in
that heat is transferred only between cells that share a common face.
The method uses cell-to-cell conductivity factors based on the
geometry of the grid. These factors may be precomputed once the
grid is specified. The rate of conductive heat flow between adjacent
cells is found by multiplying the temperature difference between the
cells by the appropriate conductivity factor.

As in the case of cell-wall advection, separate treatments are
required for the tangential and radial conduction associated with the
plane and spherical faces, respectively. For radial conduction, the
conductivity factor ;r is given by the formula

€. = KArm/(r, =F) (6.1)
where k is the thermal conductivity and A is the area of the spherical
face at unit radius. F1 and FZ are defined by

2 2
Al =ty £y

r. = (6.2)
1 3(r'l_1 + r')




and Z(rf + 0P r$+1)
= . (6.3)
2 3(r‘l '+1)

Here L denotes the inner radius of the lower cell, Ly the radius of

+r

the common face, and risq the outer radius of the upper cell.
The radii F] and FZ have special significance in themselves.

Consider the problem of steady state conduction across a spherical

layer with isothermal boundaries at ri and r.. The radius F1 is the

position in the layer at which the temperature is equal to the mean

temperature of the layer. The radius ?2 has a similar significance for
a layer with isothermal boundaries at r; and riep-  With  this

understanding it is clear how to treat the temperature boundary

conditions. The value for FZ at the outer shell boundary is simply the
outer radius of the shell, and the value for F1 at the inner shell

boundary is the inner radius of the shell. Boundary temperatures are
then handled in the same fashion as cell temperatures. For the test
problem of steady state conduction across a spherical shell with
isothermal boundaries, it is readily verified that this discrete
formulation gives a result which agrees exactly with the analytical
solution.

For tangential conduction, the conductivity factor En is given by

the expression

En = k¢(r° - r!)/G . (6.4)
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where ¢ is the angle subtended by the planar face, vy the outer

radius of the face, and & is the distance between cell centers when
both are projected to unit radius.

A test problem to check the accuracy of this approximate
formulation for the tangential conduction uses a spherical shell of
thickness t with conical sections removed at the north and south poles
as illustrated in Figure 6.1. The spherical surfaces are taken to be
perfectly insulating and the conical surfaces isothermal with a
temperature difference AT between them. The resulting heat flux Q
for this problem is given by

= TktAT
Q = =T Fan ¢./2)’

(6.5)

where ? is the half-angle of the conical surface with respect to the

center of the shell. The temperature distribution T(¢) in the shell as

a function of colatitude ¢, when the temperature T(¢o) on the conical

surface at the north pole is AT, is

2n tan(4/2)

in fan(¢_/2) (6.62

T(¢) = T(¢°)

It is possible to check the numerical solution both for the total
heat flux Q and the temperature profile T(g¢). The n =28
discretization yields a heat flux value which is 0.55 percent less than
the analytical value, while the n = 16 discretization gives a value of

0.39 percent less. These results are for a value of ¢ of 30 degrees.

Meridional temperature distributions are listed in Table 6.1. Since
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Figure 6.1, Test problem
conduction.
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tangential conduction plays only a secondary role in the mantle
convection problem, the accuracy indicated here is deemed
satisfactory. Part of the error in this experiment is associated with
the piecewise constant representation of the temperature field and
ought not be attributed to the technique used to model the conduction

itself.
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Table 6.1. Meridional temperature distributions
for tangential conduction experiment
(¢o = 30 degrees).

?Z;Z:L;:?e Tn=8 Tn=16 Texac‘r
31.95 0.939 0.936 0.950
37.38 0.815 0.817 0.823
48.01 0.610 0.614 0.614
53.17 0.526 0.524 0.526
63.39 0.363 0.365 0. 366
68.55 0.290 0.289 0.291
79.19 0.144 0.144 0.144
84.62 0.073 0.073 0.071
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6.3 SECOND-ORDER RUNGE-KUTTA TIME INTEGRATION

The preceding two sections outlined methods for computing the
time rates of change on the cells of mass and of heat due to advection
and conduction. Addition of a radiogenic heat source in each cell
completes the description of the spatial discretization of the mass and
energy conservation equations. Attention will now be directed to their
time discretization.

The discrete time integration procedure selected provides

second-order accuracy but requires derivatives at two points in each

interval. For purposes of illustration, consider the differential
equation

G ..

a.’. — f(C) . (6.7)

The method can be summarized as follows, where superscript (n) is
used to denote the value at the end of time interval n, At is the
length of the interval, and 6 is a scalar constant between zero and

one:

£14 & (n)

7, 2] (6.8)

ISR . ) N | 5

= . = ¢t + 8 - OA-'..] (6.9)

g L e S r -6y 2 48 3 o (6.10)
o A,
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This is the second-order Runge-Kutta formula. It is applied in a
straightforward fashion to the discretized mass and energy
conservation equations using a value for 8 of 0.75.

Of course, to do the convection problem, the discretized version
of the complete system of equations (2.15)-(2.18) must be solved
together. Once the mass and energy conservation equations have been
integrated to yield updated distributions for density and temperature,
these are processed by the equation of state to provide an updated
pressure field, which in turn is required in solving the force balance
equation for a revised velocity field. In this overall process, the time
step At is continually adjusted so that only one iteration of the
multigrid algorithm is needed to maintain the residual error in the
force balance equation below some specified level (typically 107*). At
the same time, an upper bound is also set on the time step such that
the mass advected through any cell in the grid in a single time step
never exceeds the volume of the cell.

To reduce the numerical stiffness arising from the large values
typically used for the bulk modulus, a damping factor for the rate of
cell density change is introduced. This damping factor scales down
the net change in density during a time step and serves to eliminate
the pressure-driven oscillations which would occur otherwise. It was
found in most cases that a damping factor of 0.001 suppresses the
oscillations without significantly altering the trajectory of the
convection solution. With this technique, the convergence rate of the
multigrid algorithm is fast enough and the accuracy of the time

integration is high enough so that, after the initial transient, time
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steps commonly on the order of 0.5 times the upper bound are

obtained.

Cost per time step in Cray-1 CPU seconds to solve the system of
equations (2.15)-(2.18) is approximately 0.5 for the n = 8 grid and

4.0 for the n = 16 grid.
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