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Figure 8.9. Same solution as Figure 8.6 except at approximately
3.3 convective overturn times. Maximum velocity for views (a)-(f) is
1.29 mm/yr, for views (g)-() is 2.29 mm/yr, and -for views (m)-(r)
is 1.32 mm/yr. (s)-(x) have the same significance and normalization
as (m)-(r) in Figure 8.1.
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Figure 8.10. Convection solution after approximately 0.1
convective overturn time for spherical shell representing the earth's
mantle, radius ratio 0.547, Rayleigh number 100,000, 482 internal
heating, constant amplitude gravitational acceleration, initialized with
warmer temperatures beneath present mid-ocean ridges and cooler
temperatures adjacent to ocean trenches. Velocity and temperature
fields are shown in (a)-(I). Orientations and radial positions of
views and normalization of temperature contours are identical to views
(a)-(l) of Figure 8.2. Maximum velocity for views (a)-(f) is
2.42 mm/yr and for views (g)-(I) is 4.10 mm/yr. Views (m)-(r) have
the same orientation as (a)-(f) with radial position of 6368 km and
maximum velocity of 2.43 mm/yr.
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Figure 8.11. Same
approximately 0.9 overturn time.
is 2.78 mm/yr, for views
(m)-(r) is 2.81 mm/yr.
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Figure 8.12. Same solution as Figure 8.10 except at
approximately 2.3 convective overturn times. Maximum velocity for
views (a)-(f) is 3.24 mm/yr, for views (g)-(I) is 5.69 mm/yr, and
for views (m)-(r) is 3.28 mm/yr.
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Figure 8.13. Same solution as Figure 8.10 except at
approximately 3.0 convective overturn times. Maximum velocity for
views (a)-(f) is 3.17 mm/yr, for views (g)-(1) is 5.58 mm/yr, and
for views (m)-(r) is 3.19 mm/yr,
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Figure 8.14. Same solution as Figure 8.10 except at
approximately 4.0 convective overturn times. Maximum velocity for
views (a)-(f) is 3.11 mm/yr, for views (g)-(I) is 5.61 mm/yr, and
for views (m)-(r) is 3.12 mm/yr. (s)-(x) have the same significance
and normalization as (m)-(r) in Figure 8.1,
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Figure 8.15. Convection solution after approximately 0.9
convective overturn time for spherical shell representing the earth's
mantle, radius ratio 0.547, Rayleigh number 1,000,000, 48% internal
heating, constant amplitude gravitational acceleration, initialized with
warmer temperatures beneath present mid-ocean ridges and cooler
temperatures adjacent to ocean trenches. Velocity and temperature
fields are shown in (a)-(l). Orientations of views and normalization
of temperature contours are identical to views (a)-(1) of Figure 8.1.
Radial position for views (a)-(f) is 6340 km, and maximum velocity is
13.9 mm/yr. Radial position for views (g)-() is 3513 km, and
maximum velocity is 20.4 mm/yr.
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Figure 8.16. Same solution as Figure 8.15 except at
approximately 1.8 overturn times. Maximum velocity for views (a)-(f)
is 12.6 mm/yr and for views (g)-(1) is 17.1 mm/yr. (m)-(r) have
the same significance and normalization as in Figure 8.1.
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Figure 8.17. Convection solution after approximately 0.1

convective overturn time for spherical shell representing the earth's

mantle, radius ratio 0.547, Rayleigh number 1,000,000, 48% internal
heating, constant amplitude gravitational acceleration, initialized with
warmer temperatures beneath present mid-ocean ridges and cooler
temperatures adjacent to ocean trenches. This case differs from that
of Figures 8.15-8.16 in that it uses a different radial discretization.
Cells in the outermost layer are 150 km in thickness as opposed to 28
km for the case of Figures 8.15-8.16. Velocity and temperature fields
are shown in (a)-(l). Orientations of views and normalization of
temperature contours are identical to views (a)-(I) of Figure 8.1.
Radial position for views (a)-(f) is 6218 km, and maximum velocity is
25.2 mm/yr. Radial position for views (g)-(I) is 3520 km, and
maximum velocity is 34.4 mm/yr. Views (m)-(r) have the same
orientation as (a)-(f) with a radial position of 6368 km and maximum
velocity of 25.5 mm/yr.
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N

Figure 8.18. Same solution as Figure 8.17 except at
approximately 0.7 overturn time. Maximum velocity for views (a)-(f)
is 12.7 mm/yr, for views (g)-(1) 17.1 mm/yr, and for views (m)-(r)
13.1 mm/yr.
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Figure 8.19. Same solution as Figure 8.17 except at
approximately 1.0 overturn time. Maximum velocity for views (a)-(f)
is 10.9 mm/yr and for views (g)-(I) is 20.0 mm/yr.
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Figure 8.19
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Figure 8.20. Same solution as Figure 8.17 except at
approximately 1.4 overturn times. Maximum velocity for views (a)-(f)
is 11.1 mm/yr, for views (g)-(l) 20.4 mm/yr, and for views (m)-(r)
11.3 mm/yr.
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Figure 8.21. = Same solution as Figure 8.17 except at
approximately 1.7 overturn times. Views (a)-(f), (m)-(r), and
(s)-(x) correspond, respectively, to views (a)-(f), (g)-(!), and
(m)-(r) of Figure 8.17 in regard to radial position. (g)-(1) have a
radial position of 4850 km. Maximum velocity for views (a)-(f) is
12.2 mm/yr, for views (g)-(I) 26.2 mm/yr, for views (m)-(r)
18.8 mm/yr, and for views (s)-(x) 12.5 mm/yr. (y)-(dd) have same
significance and normalization as (m)-(r) in Figure 8.1.
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9. CONCLUSIONS

This  dissertation illustrates the effectlveness of a mulﬂgmd 1

solution technique when used in conjunctlon w1th the flmte elementw‘_',t_"

method and demonstrates that O(n) speed can be achleved for\'w‘,,--': "
three-dimensional problems, where n is the number of degrees “ of :
freedom. The O(n) speed implies a savings in computatlonal cost over.

other methods currently in use comparable to the savmgs afforded by’_

the fast Fourier transform in spectral calculatlons

The application of the multigrid technique to a spherical shell

brings into focus many of the benefits derived from a discretization
based on the regular icosahedron. In addition to providing a
convenient means for generating a set of nested grids needed by the
multigrid approximate inverse algorithm, the regular icosahedral mesh
gives an almost uniform discretization of the sphere, hae symmetries
which can be exploited to reduce significantly operator storage and
assembly costs, and produces a data structure that can be ‘readily
vectorized and partitioned for efficient implementation on a computer
with multip‘lei processors. A new finite element for the sphere based
on sphericai Barycentric coordinates is described.

Formulation of the thermal convection problem using this numerical
approach accomodates features such as compressibility and spatially
varying material properties which other techniques commonly exclude.
The dissertation, while_ limiting its scope to the case of spatially
uniform properties and almost incompressible flow, nevertheless

demonstrates that non-Boussinesq effects of finite bulk modulus and
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finite thermal expansivity can be on the order of several percent for
problems of practical interest,

Several new results are obtained for the problem of infinite

- Prandtl number, almost incompressible convection in a hon-rotati_ng -
spherical shell of radius ratio 0.5 with fUndeformablé,”'~~freé-slip'..ff:'f.f'
boundaries, gravitational ‘acceleration. increasing’-linearly with ra,di’us,v

Newtonian rheology, and spatially uniform material properties.wWheﬂ

heating is strictly from below, the Nusselt number is found to scale
WEth Rayleigh number to the 0.286 power. Furthermore, the preferred
pattérn, for Rayleigh numbers from just above critical to at least 10%,
consists of three cells, two of which are slightly larger than the third
and mirror images of each other, with upwelling at the cell centers.
The pattern resembles the L = 3, M = 3 sectorial paftern with one cell
smaller than the other two. |

When heating is strictly from within, a similar pattern, except
that downwelling occurs at the cell centers, is reached from random
initial conditions for Rayleigh numbers up to 15 times critical. At still
higher Rayleigh numbers the number of cells begins to increase and
- the downwelling becomes intense and localized in narrow columns.

When. heating is partly from below and up to at least 75% from
within, the mean convective velocities remain almost uncHanged from
the heated strictly from below case. As more internal heat is added,
the interior temperature rises, the pattern modifies its form somewhat,
but the heat flow through the inner boundary is only weakly reduced.

Experiments applied to the earth's mantle use g3 radius ratio of

0.547 and constant gravity, but otherwise involve the same
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assumptions as above. Cases nmtlahzed with a temperature dlstrlbutlon

warmer beneath present-day mid-ocean ridges and cooler adjacent to
present trenches yield solutlons ‘which dlsplay surface velocities that

correlate well in direction and relative magmtude wuth present surface

velocntles on the earth for times correspondmg to multlp!e convectlve

overturns -and Ray!elgh numbers from 25, 000 to 10‘ h At R = 10‘ vthe.
‘solutlon has plume-like character with the upwelhng flow locallzed to .
seven plumes. Centers of three plumes are near regions of current
major active mid—oceah volcanic activity.’ Power-law scaling of these
results to a Rayleigh number of 2 x 107, appropriate to who|e~mantle
convection, vyields an RMS surface velocity of 37 mm/yr. Since this
number is close to the observed value, these results appear to favor
whole-mantle convection instead of two-layer convection, as the latter

has significantly lower convective efficiency.
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