7. ILLUSTRATIVE EXAMPLES OF CONVECTION IN
SPHERICAL SHELLS

This chapter presents results obtained by applymg the numerical

'method described in Chapters 4—6 to a few selected convectlon

problems. In all of these, the domam consists of a spher:cal shell

wnth undeformable, fr'ee sllp boundames. The ratio at inner radlus to

outer radius is 0.5. The boundarles are lsothermal except when

specified as perfectly insulating. The material properties are taken to

be constant throughout the domain. Gravitationel acceleration i‘s

spherically symmetric and linearly proportional to radius. As

mentioned in Chapter 2, restrictions of infinite Prandt| number, linear

isotropic rheology, incompressibility, and omission of rotation and

shear heating are also being made, although the numerical method

itself is not so restricted.

To compare with the results of other investigators who have used

the Boussinesq approximation, which assumes density is ‘constant

except in the body force term of the momentum conservation equation,

an  attempt is also made to simulate Boussinesgqg conditions.

Specifically, the product aAT, where « is the volume coefficient of

thermal expansion and AT represents the maximum temperature

difference in the shell, is kept small — in most cases below a value of

10-*.  Similarly, the value for the bulk modulus is chosen as large as

computational efficiency considerations reasonably allow. Section 7.2

describes some of the differences which arise when finite values for

thermal expansivity and bulk modulus are used.




7.1 SHELL HEATED FROM BELOW: THE PREFERRED SOLUTION

Because of the «cost of = 3-D calculations, most previous
investigations of finite-amplitude convection in spherical shells have
been limited to the axisymmetric case. Such studies at infinite Prandtl
number (Schubert and Zebib, 1980; Zebib et al., 1983) have shown
that the axisymmetric solutions are unstable in general to
three-dimensional perturbations when the shell'radius ratio is 0.5 or
greater. This lack of stability of the axisymmetric solutions correlates
closely with the point at which the meridional wave number ¢ with the
smallest critical Rayleigh number switches from 2 to 3. Figure 7.1,
reproduced from Zebib et al. (1983) shows that this transition occurs
at a radius ratio of 0.46 when heating is strictly from below and at
0.50 when heating is strictly from within the shell. In other words,
when the wave number with the smallest critical Rayleigh number is
three or greater, fully three-dimensional preferred solutions are
expected. It is of interest therefore to find these general solutions
and to investigate their properties.

This section describes an experiment to search for the preferred
three-dimensional pattern or patterns when heating is strictly from
below. In this experiment the volume coefficient of thermal expansion

@, gravitational acceleration 9 at the outer shell boundary,
zero-temperature density Por specific heat cp, boundary temperatures
T1 and T2’ shell thickness d, dynamic shear viscosity u, and thermal

conductivity k were selected to yield a Rayleigh number R given by

) 2 3
R = czgopocp(T1 - T,)d7/uk (7.1)
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Figure 7.1. Critical Rayleigh number for the onset of convection
{ as a function of the shell radius ratio for different values of
meridional wave number ¢. (a) Heated only from below. (b) Heated
only from within.
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of 10,000, or about 10 times critical. Several different initial

temperature distributions were chosen and runs were made using an

n = 8 grid.

To summarize the results, it was found that the safne distinctive,
fully three-dimensional solution is obtained after a sufficient number of
convective overturns from a variety of initial conditions. This solution
has three cells, with two of the cells being mirror images of each other
and somewhat larger in size than the third cell. Upwelling is at the
cell centers.

This preferred solution was obtained most directly from an initial
temperature distribution represented by the L =3, M =3 spherical
harmonic, that is, a three-cell sectorial pattern. Figure 7.2 shows the
final velocity and temperature distributions for this case as well as a
summary of its time history.

Figure 7.2 (a)-(f) are six views of the solution at the first
internal layer of nodes below the outer boundary, in this case at a
radius of 0.965 times the outer radius of the shell. A tangential and a
radial arrow at each node are used to represent the velocity field. |If
a velocity component is below a threshold value, plotting is
suppressed. Near the she” boundaries the flow is almost entirely
tangential, so few radial arrows appear. The velocities are normalized
by the factor x/d, where r is the thermal diffusivity and d is the shell
thickness. The magnitude of the non-dimensional fluid velocity is
therefore in terms of a characteristic speed for heat diffusion through

the shell. For plots (a)-(f) the arrow of maximum length represents a

76




Plots (0)-(r) show the time history of the calculation, where time
has been normalized by a charactemstlc thermal dnffusuon time gtven by
d?/x. For this case one convective overturn corresponds to a tlme of
’about 0.13, so the run represents a total of about a dozen overturns
bPlot (o) is the time history of the RMS value of the nodal velocities,
while (p) displays the history of the mean shell temperature. Plots
(q) and (r) show the time nistories of the heat flow through the top
and bottom boundaries, respectively. The heat flow is normalized by
the conductive heat flow which would occur in the absence of
convection and is therefore equivalent to the Nusselt number. For
this case the Nusselt number is 3.55. The asymptotic character and
flatness of these curves at the end of their time history imply the case
is well converged.

The same solution, except for orientation, was also obtained from
initial temperature distri'butions which were random in character. For
such cases the initial temperature field was generated by first creating
a spherically symmetric distribution havin"g a temperature of 0.2 in the
outermost layer of cells, 0.7 in the innermost layer, and 0.35 in the
other layers. The cell temperatures over the entire shell were then
multiplied by a set of random numbers uniformly distributed on the
internal (0.5, 1.5). The initial density field was computed from this
temperature field to yield vanishing deviatoric pressure throughout the
shell.

Figure 7.3 provides several snapshots of the solution during the
course of one such calculation initialized with random temperatures.

These Snapshots were taken at times of 0.001, 0.27, 0.56 and 1.14.

78




In the first snapshot, the high spatial frequencies of the initial random
distribution are clearly evident. The next snapshot, taken after
approximately two overturn times, shows that virtually all the high
spatial frequency components initially present have disappeared,
leaving two cells of similar size in the northern hemisphere and twé
additional cells, somewhat larger in size, in the southern hemisphere.
The pattern is notably tetrahedral in character. In the next
snapshot, taken after approximately four convective overturn times,
one of the northern hemisphere cells present in the previous snapshot
has all but lost its identity. It appears to have coalesced with one of
the southern hemisphere cells and much of its former territory has
been occupied by the other northern hemisphere cell. In the final
snapshot, taken at approximately eight overturn times, there is no
trace of the vanishing cell of the previous snapshot. There are now
three well-defined cells, two of which are similar in size and shape and
distinctly larger than the third. The pattern is qualitatively the same
as that of Figure 7.2. Inspection of the time history plots suggests
that, while this case is not as well converged as that of Figure 7.2,
the global values for mean velocity, mean temperature, and heat flow
for the two cases agree quite closely.

Another case similar to the one just described except for a
different set of random initial temperatures gave almost identical
results. A four-cell pattern early in the time history developed into
the three-cell pattern with two large cells of essentially the same size
and shape and a smaller third cell. Figure 7.4 shows the final

sojution.
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B’ecause of the frequent appearance of patterns displaying
tetrahedral character, at least early in the time histories of cases
started from random initial conditions, a case was run with a
tetrahedral initial temperature perturbation. In this case, just as in
the majority of the cases started form random4distributions, two of the
cells coalesced to yield, after about a dozen ¢onvective overfurn times,
the same three-cell pattern. This solution is presented in Figure 7.5,

Two cases were run which did not yield the three-cell solution.
Both used axisymmetric initial conditions. Thé‘first was started form
a L=3, M=0 spherical harmonic temperature distribution. This
pattern was unstable and quickly transformed to a L =2, M=0
pattern with upwelling at the equator and downwelling at the poles as
shown in Figure 7.6, Nothing in the time hisfory suggests that the
final solution is not a stable one. The Nusselt number for the two-cell
pattern was 3.45, some three percent lower than obtained f;)r the
three-cell solution. The other case used a L=‘4, M = 0 initial
temperature distribution and resulted in the identical two-cell solu;cion.

These results lead to the conclusion that most trajectories in
solution space for this shell geometry, mode of heating, gravity
distribution, and Rayleigh number lead to the three-cell solution of
Figures 7.2-7.5. Although a stable axisymmetric solution may be
reached from axisymmetric initial conditions, the evidence suggests

that the three-cell solution should be considered the preferred one.
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Figure 7.2. Convection solution for spherical shell, radius ratio
0.30, Rayleigh number 10,000, heated only from below, with
gravitational acceleration increasing linearly with radius. Initial
temperature perturbation was L =3, M = 3 spherical harmonic. Final
velocity and temperature distributions are displayed in (a)-(l).
Views (a)-(f) are just below the outer boundary at a radius of 0.965
relative to the outer shell radius, "with (a)-(d) at 0°, 90°, 180°, and
270° iongitude, respectively, in equatorial plane, and (e) and (f)
from north and south poles, respectively. Views (g)-(l) correspond
to (a)-(f) except that they are just above the inner boundary at a
radius of 0.526. Maximum velocity, normalized by «/d, for views
(a)-(f) is 39.5 and for views (g)-() is 72.9. Temperatures,
represented by contours, are normalized such that the isothermal
outer boundary has a temperature of zero and the isothermal inner
boundary has a temperature of one. Plot (m) shows. the final
spherically averaged radial (R) and tangential (T) velocity
distributions, and (n) displays the final spherically averaged radial
temperature profile. The smooth curve in (n) is the conductive
profile. Time history curves (0)-(r) use time normalized by d2/k.
Time history of the RMS value of the nodal velocities is displayed in
(o) and of the mean shell temperature in (p). Curves in (q) and
(r), respectively, show the variation of heat flow with time,
normalized by the conductive heat flow in the absence of convection,
at the top and bottom boundaries.
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Figure 7.2
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Figure 7.3. Convection solution for spherical shell, radius ratio
0.50, Rayleigh number 10,000, heated only from below, with
gravitational acceleration increasing linearly with radius and a random
initial temperature distribution. The temperature field at time 0.001

is shown in (a)-(d). (a) and (b) are, respectively, views from
north and south poles at a radius of 0.965. (c) and (d) are
corresponding views at a radius of 0.526. The high spatial

frequencies of the initial random field are clearly evident. Velocity
and temperature fields at time 0.27 are displayed in (e)-(p).
Orientation and radial position of views are identical to those of
(a)-(1) in Figure 7.2. Maximum velocity for views (e)-(j) is 39.5 and
for views (k)-(p) is 76.0. Velocity and temperature fields at time
0.56 are shown in (g)-(bb). Maximum velocity for views (q)-(v) is
43.3 and for views (w))-(bb) is 78.5. Velocity and temperature
fields at time 1.14 are shown in (cc)-(nn). Maximum velocity for
views (cc)-(hh) is 43.9 and for views (kk)-(nn) is 78.4. (o0o) shows
the spherically averaged radial and tangential velocity profiles and
(pp) the spherically averaged radial temperature profile at time 1.14.
(qg)-(tt) are time history plots of RMS nodal velocity, mean
temperature, outer boundary heat flow, and inner boundary heat
flow, respectively.
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Figure 7.3
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Figure 7.4. Convection solution for spherical shell, radius ratio
0.50, Rayleigh number 10,000, heated only from below, with
gravitational acceleration increasing linearly with radius and a random
initial temperature distribution. Final velocity and temperature fields
are displayed in (a)-(l). Orientations and radial positions of views
are identical to those of Figure 7.2. Maximum velocity for views
(a)-(f) is 44.8 and for views (g)-(I) is 79.5. (m) shows the
spherically averaged radial and tangential velocity profiles and (n)
the spherically averaged radial temperature profile.
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Figure 7.5. Convection solution for spherical shell, radius ratio
0.50, Rayleigh number 10,000 heated only from below, with
gravitational acceleration increasing linearly with radius and a
tetrahedral (L =3, M =2) initial temperature condition. Final
velocity and temperature fields are displayed in (a)-(I). Orientations
and radial positions of views are identical to those of Figure 7.2.
Maximum velocity for views (a)-(f) is 41.6 and for views (g)-(l) is
76.2. (m) shows the spherically averaged radial and tangential
velocity profiles and (n) the spherically averaged radial temperature
profile.
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Figure 7.6. Convection solution for spherical shell, radius ratio
0.50, Rayleigh number 10,000, heated only from below, with
gravitational acceleration increasing linearly with radius and a L=3,
M=0 initial temperature distribution. Final velocity and temperature
fields are displayed in (a)-(d). (a) and (b) are equatorial and polar
views, respectively, at a radius of 0.965 times the outer shell radius
where the maximum velocity is 40.7. (c) and (d) are equatorial and
polar views, respectively, at a radius of 0.526 times the outer shell
radius where the maximum velocity is 77.4. (e) shows the spherically
averaged radial and tangential velocity profiles and (f) the spherically
averaged radial temperature profile at time 1.11. (g)-(j) are time
history plots of RMS nodal velocity, mean temperature, outer
boundary heat flow, and inner boundary heat flow, respectively.
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7.2 SHELL HEATED FROM BELOW: VARIATION WITH RAYLEIGH
NUMBER

This section treats a series of case#, heated from below, in which
the primary parameter varied is the Rayleigh number. The preferred
solution described in the preceding section was used as the starting
solution in this series as the Rayleigh number was .increased énd
decreased in stepwise fashion from the value R = 10,000. In all cases,
except in the near vicinity of the critical Rayleigh number, the pattern
maintained its stability and form. Results for the range of Rayleigh
number between 1250 and 100,000 are summarized in Table 7.1.

—Most of the cases of Table 7.1 and all of those described

elsewhere in the dissertation used a value for the normalized bulk

modulus (Ko/pogd) of 0.174 and a value for the volume coefficient of
thermal expansion « such that a(T.] - T,) =9.3 x 10°*, where T1 and
T2 are thAe temperatures of the inner and outer boundaries,

respectively. Several considerations influenced the choice of these
values. One was the desire to make direct comparisons with the
Boussinesq results of other investigators. To simulate Boussinesqg

conditions means that Ko should be made as large and « as small as

possible. Computational efficiency, on the other hand, demanded a

small value for Ko to keep the stiffness of the system of equations to a

reasonable level and permit large time steps. A third consideration
was the goal of making the calculations geophysically relevant. The
value chosen for a is roughly two orders of magnitude smaller than is
estimated for the earth's mantle but prevented the relative density

variations from exceeding 10°3. The bulk modulus chosen s
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Table 7.1.

Summary of convection results for spherical shell,

radius ratio 0.5, heated only from below, with
gravitational acceleration increasing linearly with
radius and preferred pattern as initial condition.

109

Bulk RMS OQuter

Rayleigh | Modulus Mean Boundary | Nusselt

Number (Ko/pogd) AT Temperature| Velocity | Number
8 1.250 0.174 | 9.3x10-" 0.286 0.26 1.01
8 1,250 0.174 | 9.3x10°5 0.286 1.51 1.08
8 1,250 0.698 | 9.3x10°% 0.285 1.47 1.08
8 2,500 0.174 | 9.3x10"4 0.279 6.58 1.84
8 5,000 0.174 | 9.3x10~% 0.271 14.2 2.70
8 10,000 0.174 | 9.3x10°% 0.257 28.2 3.55
8 10,000 1.744 | 9.3x1073 0.245 27.2 3.56
8 25,000 0.174 | 9.3x10"* |  0.253 55.2 4.71
8 50,000 | 0.174 | 9.3x10-% | 0.256 87.1 5.56
8 100,000 0.174 | 9.3x10~% 0.259 138. 6.61
16 100,000 0.174 | 9.3x10-% 0.224 137. 7.00




approximately a factor of ten below that of the earth's mantle but
provided high computational efficiency.. These values thus represent a
tradeoff among the three considerations given above.

These values for thermal expansivity and bulk modulus yielded a
critical Rayleigh number of 1235, which is 13% above the Boussinesq
results of Chandrasekhar (1961) and of Zebib et al. (1980, 1983) for
the same case of infinite Prandt! number convection in a spherical shell
heated only from below with radius ratio 0.5, free-slip boundaries,
gravity increasing linearly with radius, and an L = 3 pattern.

To check the magnitude of the non-Boussinesq effects of finite Ko

and finite &, cases were run (Table 7.1) at R = 1250, one with a

factor of four increase in KQ and the other with a factor of 10

reduction in «. Each yielded a 7% increase in the Nusselt number
which implies about a 5.5% reduction in the critical Rayleigh number.
These cases confirm that the non-Boussinesqg effects associated with

the selected values for both Ko and o are on the order of several

percent for Rayleigh numbers near the onset of convection.

A third case was run at R = 10,000 in which both Ko and « were

increased by a factor of 10 to values not far from those estimated for
the earth’'s mantle. The resulting Nusselt number of 3.56 is almost
identical to that obtained with the lower nominal values for K, and
a. This suggests the differences in large amplitude convection

between use of earth mantle values for KO and « and the lower values

used in these calculations is small.
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An important issue addressed by the series of cases of this
section is the resolving power of the grid. Figure 7.7 shows
spherically averaged radial temperatﬁre profiles for Rayleigh numbers
of 2500, 5000, 10,000, 25,000, 50,000, and 100,000. Each of these
cases uses an n = 8 grid. Indicated by circles are fhe radial nodal
locations. It is clear that, as the Rayleigh number is increased, the
thickness of the thermal boundary layers decreases, and at some
point, a significant Ioss. of accurécy will occur for a given number of
radial grid points.

Two checks are described for a loss of accuracy. The firsf
extrapolates the power law relationship for Nusselt number as a
function of Rayleigh number. Boundary layer theory indicates that for
stress-free boundaries the Nusselt number should increase roughly as
R¥? (Busse, 1978). The results in Table 7.1 yield an exponent of
0.3086 for the Rayleigh number interval 10,000-25,000. If this
relationship is extrapolated to R = 50,000 and 100,000, one predicts
Nusselt numbers of 5.83 and 7.22, respectively. Comparison with the
results obtained using an n = 8 grid in Table 7.1 suggests a moderate
(5%) loss of accuracy at R = 50,000 and an even larger (8.5%) loss at
R = 100,000.

A second check on the accuracy is to run the calculation on a
finer grid. This was done using a n = 16 grid for R = 100,000. The
Nusselt number of 7.00 shown in Table 7.1 is somewhat below the
value extrapolated from the R = 10,000-25,000 interval. A revised
estimate for the exponent of 0.2858 is obtained using the Nusselt
numbers of 4.71 at R = 25,000 and 7.00 at R =100,000. This
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exponent yields an estimated Nusselt number at R = 50,000 of 5.74 and
implies the value obtained with the n = 8 grid is only 3.2% low. The
loss of accuracy at R = 100,000 relative t‘o. the 7.00 value with the
n = 8 grid is now only 5.9%.

Although more data would bé helpful in determining the precisé
Nusselt number versus Rayleigh number dependence, these resulté
constrain the uncertainty to within a few percent. Figure 7.9
provbides a best estimate for this relationship. The solid curve
represents.the data of Table 7.1 for the selected values of bulk
modulus and thermal expansivity. The dashed curve is the Boussinesq
resuit of Zebib et al. (1980).

Figure 7.10 shows the solution for R = 1250 near the critical
Rayleigh number. Since this case is close to the onset ’of convection,
its spherically averaged temperature profile is very nearly that of the
conductive state. The time history plots indicate a mild oscillation.

Figure 7.11 presents the n =16 solution | obtained for
R = 100,000. Although the shapes of the cells are modified somewhat
compared with the R = 10,000 case of Figure 7.2, their positions and
sizes are essentially identical. The spherically averaged radial
temperature profile indicates the boundary layers are well resolved

with the n = 16 grid.

112




Figure 7.7. Spherically averaged radial temperature profiles for
spherical shell heated only from below, radius ratio 0.50, with
gravitational acceleration increasing linearly with radius for Rayleigh
numbers of (a) 2500, (b) 5000, (c) 10,000, (d) 25,000, (e) 50,000,
and (f) 100,000. Circles denote nodal positions in n = 8 grids. The
smooth curve in each plot is the conductive profile. '
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Figure 7.8. Spherically averaged radial and tangential velocity
profiles for spherical shell heated only from below, radius ratio 0.5,
with gravitational acceleration increasing linearly with radius for

Rayleigh numbers of (a) 2500, (b) 5000, (c) 10,000, (d) 25,000,
(e) 50,000, and (f) 100, C00.
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Figure 7.9. Nusselt number versus Rayleigh number for
spherical shell heated from below with radius ratio 0.50 and
gravitational acceleration linearly increasing with radius. Calculations
use finite bulk modulus with K /p gd = 0.174 and finite thermal
expansivity with [aATl<1073. Da3héd curve represents Boussinesqg
result of Zebib et al. (1980).
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Figure 7.10. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number 1250, heated only from below, with
gravitational acceleration increasing linearly with radius and initialized
with preferred solution. Final velocity and temperature fields are
displayed in (a)-(lI). Orientations of the views correspond to those
at Figure 7.2. Radial locations of views (a)-(f) is 0.917 times the
outer shell radius and maximum velocity is 0.48. Radial location of
views (g)-(1) is 0.545 times the outer shell radius and maximum
velocity is 1.00. (m) shows the spherically averaged radial and
tangential velocity profiles and (n) the spherically averaged radial
temperature profile. (o)-(r) are time history plots of RMS nodal
velocity, mean temperature, outer boundary heat flow, and inner
boundary heat flow, respectively. -
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-

Figure 7.11. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number 100,000, heated only from below, with
gravitational acceleration increasing linearly with radius. Case used
an n = 16 grid and was initialized with solution obtained on an n = 8
grid at R = 100,000 and whose ancestry originated with the solution
of Figure 7.2. Velocity and temperature fields are displayed in
(a)-(1). Orientations of the views correspond to those of Figure 7.2.
Radial position of views (a)-(f) is 0.986 times the outer shell radius
and maximum velocity is 220.9. Radial position of views (g)-(1) is
0.509 times the outer shell radius and the maximum velocity for these
views is 369.0. (m) shows the spherically averaged radial and
tangential velocity profiles and (n) the spherically averaged radial
temperature profile. (0)-(r) are time history plots of RMS nodal
velocity, mean temperature, outer boundary heat flow, and inner

boundary heat flow, respectively.

125




Figure 7.11

126




CoHET)
A
R

A
50\
=AW
<
D

vv |

Figure 7.11

127




.90+ 4
.85¢ J

.75+ .
.70+ » 4
.65 4

NORMALIZED RADIUS

.85L% 4
.50

e ' b b3 A ] i 4 4

0 20 40 60 80 100 120 140 160 180 200 220 240
NORMALIZED VELOCITY

100 y o T T T T T T T T

.90 ¢+ <
.85+ >

.75 ¢+ -
.70+ 4
.65+ N

NORMALIZED RADIUS

.65 ¢+ 4

.SO 3 i 3 I i - - o »
N I | .2 .3 .4 .5 6 .7 .8 .9 1.0

NORMALIZED TEMPERATURE

L ]
S

280 T L4 T T T T T T T

260 + 4

290} .

220+ 4

200+ 4

180 4

160 ¢+ .

NORMALIZED VELOCITY

140 A 1 4 s . 'S ' s 1
.00 .02 .04 .06 .08 .10 .12 .14 .16 18 .20

NORMALIZED TIME

Figure 7.11

128




~
~N

-06 .08 .10 .12 .14 .16 .18 .20

-04

N
(=]

o
Q

FYNLVYIAWIL 03Z1TVWYHON

(p)

20

.16 .18 .20
.16 .18

14
.14

NORMALIZED TIME

2

-1

.12

.10
.10

.08
.08

NORMALIZED TIME
Figure 7.11
129

NORMALIZED TIME

.06
.06

-04
.04

.02
.02

9.0
8.8}
8.6+
8.4}
8.2
.00
.00

I 8.0
Q7.

N 7.6+
-] 7.4%

1V3H 03ZIIVWHON

<

(q)




7.3 SHELL HEATED FROM WITHIN WITH RANDOM INITIAL
TEMPERATURES

Thus far the treatment has been restricted to heating only from
below, that is, only from the inner shell boundary. This section
descrfbes an experiment in which the heating is due solely to uniformly
distributed internal heat sources. For these cases the inner boundary
is assumed to be perfectly insulating. Otherwise, the conditions are
identical to the preceding two sections. In particular, the shell radius
ratio is 0.5 and the gravitational acceleration increases linearly with
radius. The same set of random numbers used to obtain the sofution
of Figure 7.3 is used to generate the initial temperature distributions.

For the case of strictly internal heating, the temperature
difference in the definition of Rayleigh number is replaced by Hd?/k,
where H is the volumetric radiogenic heat production rate, d is shell
thickness, and k thermal conductivity as before. The formula for

Rayleigh number then becomes

R = agopgcpHdS/ukz . (7.2)

To quantify the effectiveness of the convection in transporting
heat out of the shell, an alternate definition for the Nusselt number is
required, since the steady-state heat flow out of the shell is fixed by
the value of H and the shell volume and does not depend on convective
processes. The definition for an internally heated shell suggested by
Schubert and Zebib (1980) is the ratic of the temperature drop across

the shell in the conductive state to the mean temperature drop in the
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steady convective state. This Nusselt number, appropriate to an

internally heated spherical shell of outer radius For radius ratio 10,

thermal conductivity k, volumetric heat generation rate H with an

isothermal outer boundary at temperature T, and an insulating inner

boundary with mean temperature T] is given by

Hrg(l = 302 + 2n°)
No = . (7.3)

6k(T1 - TZ)

This formula is used to measure the convection efficiency of the
internally heated cases in this section. ) |

Cases were run for Rayleigh numbers of 10,000, 30,000, 100,000
and 300,000. Velocity and temperature fields as well as time history
plots for these cases are presented in Figures 7.12-7.15. All these
cases were started from the same random initial temperature
distribution. The pattern which develops at R = 10,000 and
R =30,000 has strong L =3, M =3 character, with three cells of
approximately equal size and downwelling at cell centers. Although
the patterns at R = 100,000 and R = 300,000 bear resemblance to the
patterns at lower ARayleig'h number, the regions of downwelling become
more localized, more intense, and more irregular in shape. In
addition, a slight evidence of time dependence appears in the
R = 300,000 solution.

A clear difference may be noted in the style of these solutions

compared with those obtained when the heating is strictly from below.

The internally heated solutions tend to show general upwelling and
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‘characterized by downwelling at the cell centers. By contrast, heated
from below solutions display a more symrhetrical “distribution of
upwelllng and downwellmg regions with upwelhng at the cell center's.

' Nusselt numbers for these four cases are 1. 99 2. 94 4.09, .and
5.35, respectnvely Using the latter two cases to estimate a power law
:;:élationship for Nusselt number versus Raylei_gh numbor yields- Van‘
oiponent of 0.‘24-4.. The Nusselt number at R = 1O,OOAO jcain be
compared with the results of Schubért and Zebib (1980). Their value
of 2.3 is some 15% higher. This difference is accounted for by the

- finite bulk jvm‘odulus‘ and finite thermal expansivity used in these

- calculations.

B

Hilghl.‘\} localized  regions of downwelling ‘_._’_wi‘,t.h a  cell pattern




Figure 7.12. Convection solution for spherical shell, radius
radius 0.50, Rayleigh number 10,000, heated only from within, with
gravitational acceleration increasing linearly with radius and initialized
with a random temperature distribution. Final velocity and
temperature fields are displayed in (a)-(I). Orientations and radial
positions of views are identical to those of Figure 7.2. Maximum
velocity for views (a)-(f) is 13.6 and for views (g)-() is 22.7. (m)
shows the spherically averaged radial and tangential velocity profiles
and (n) the spherically averaged. radial temperature profile. (o)-(q)
are time history plots of RMS nodal velocity, mean temperature, and
outer boundary heat flow, respectively.
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Figure 7.13. Convection solution for spherical shell, radius
ratio 0.50, Rayleigh number 30,000, heated only from with, with
gravitational acceleration increasing linearly with radius and initialized
with a random temperature distribution. Final wvelocity and
temperature fields are displayed in (a)-(l). Orientations and radial
positions of views: are identical to those of Figure 7.2. Maximum
velocity for views (a)-(f) is 24.7 and for views (g)-(1) is 40.7.
(m)-(g) correspond to similar plots in Figure 7.12.
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